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STRUCTURAL DYNAMIC THEORIES OF FRACTURE DAMAGE DIAGNOSIS

ABSTRACT

In this report, twu modal theories of damage diagnosis in simple and
complex structures are presentea. The modal frequency theory, based aon the
changes in the modal frequencies of a structure due to damage, is shown to
be a suitable method for simple fracture configurations, but not for complex
ones. The transmissibility theory, which utilizes the changes in trans-
missibilities across a structure, is, on the other hand, proposed as a
feasible method for damage diagnosis in large structures.

The modal frequency theory 7is a‘ppHed to multiple cracks in simple
beams to demonstrate its intrinsic uncertainties. [t is shown that closely
spaced multiple cracks behave as one single crack as far as the modal
frequencies are concerned. Uncertainties may arise in the diagnosis of
multiple cracks when an inadequate number of freguency measurements are
available. When the structure has one major crack in addition to minor
ones, hcowever, the major crack is diagnosable.

[n the transmissibility theory, the effects of (1) the excitation
focation and frequency, (2) the locations of the response stations where
transmissibilities are computed, (3) the crack location and severity, and
(4) damping on the transmissibility changes are studied for a three-story
four-span frame structure. [t is found that best results are obtained when
the frame is excited near the joints at its modal frequencies and when the
response stations are located in the vicinity of the minimum deflection
points. The largest transmissibility changes are shown to occur at the

response stations nearest the crack. This result allows the crack to be
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Tocated within one or two cells of a frame structure. The regions of the
framé which, when cracked, are undiagnosable at the fundamental freguency
are established in the study. The advantage of exciting the structure at a
nigher modal frequency, in such cases, is demonstrated. It is shown that
undiagnosable regions become larger for less severe cracks.

The structures are modeled without loss of generality as composed of
generalized Bernoulli-Euler beams, undamped in the application of the modal
frequency theory and damped in that of the transmissibility theory. Oamping
is incorporated by means of the complex Young's modulus. In the analysis,
the general theory of circuit is utilized to represent simple beams with
basic electric circuits, and the fracture hinge by an e1ectrica1 resistor.
The damage analysis of a complex frame structure is thus formalized and
adaptive for computer programming. A formalized program for the computation

of frame deformation is enclosed.
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CHAPTER 1

INTRODUCTION

Fracture damage diagnosis stems from the need to ensure safety of
structural components or structures, or from the requirements of quality
contral in production. Structures may develop cracks from aging but most
Tikely as a result of some strong excitations such as in earthquake, blast
loading, wind loading and the like. Diagnosis of flaws is thus essential in
assessing the reliability and integrity of the structure. The diagnostic
method must be of such a nature that it is nondestructive. The present
report summarizes two diagnostic theories for fracture damage in structures
based on the modal theory of structure dynamics. The first one is the modal
frequency theory. The second one is' the transmissibility theory. )

Nondestructive testing began gaining importance in industry after World
War I even though there were earlier studies to detect cracks in mefa]s
nondestructively [1]. Nondestructive testing had nc great impetus, hcowever,
until World War [I. Since then, it has become a major area of research and
development. Mondestructive test techniques include the categories of
radiography, sonic-ultrasonic methods, visual methods-penetrants, electro-
magnetic methods and thermal methods. The current ASME code for the inspec-
tion of boilers and pressure vessels recognizes some of the existing methods
which fall into the first four of these categories [2]. None of these
methods, however, yield good results when the surfaces of the crack are
nearly parallel to the direction of propagation of waves or magnetic flux
lines. On the other hand, all of these methods ace local methods, that is,

the excitation (X-rays, ultrasonic transmitter, magnetic coil, or heat flux)




and the sensor must be physically near the flaw. As a result, a scanning of
the structure or the component is necessary to cover all areas which are
likely to contain flaws. A global fuil-scale testing method is, therefore,
needed for diagnosis of damage in large structufes such as bridges, offshore
platforms, buildings and the likes. By a global method is meant a method
whereby the location and possibly the severity of flaws in a structure can
be determined by exciting the structure at an arbitrary point and monitoring
the responses at various stations on the structure, without the need for
scanning. An ultrasonic technique described as global was proposed [3,4]
for the inspection of tubular K-joints, where globalism is defined as the
capability to monitor an entire joint rather than an entire structure. The
proposed method, however, is not capable of detecting cracks which are
located around the periphery of the major tubular column near the joint [4].

A global method of damage detection studied recently is the random
decrement technique [5,6]. The random decrement process is a signal pro-
cessing technique which extracts the free decay responses from the random
dynamic responses. The changes in the free decay responses at several
locations an an experimental scale model of an offshore platform were used
to detect the damage in the structure [5]. The scale model consisted of six
levels with K-joints at the mid-span of each girder. The predictions of the
damage locations in various damage scenarios were not very specific with the
random decrement method. The cross random decrement method was later
employed as an improvement [6]. This technique utilizes two simultaneous
response measurements from two different positions on the structure.
Experiments were carried out on a similar platform model. Relative phase
shifts between every two nefghboring response locations were computad using

the cross random decrement technique before and after damage was introduced.




The largest changes in the relative phase shifts, in general, occurred at
locations near the damage. Both studies by Yang et al. [5] and Tsai et al.
[6] were purely experimental. Experiments of this nature are costly and
cannot be carried out for a significant number of damage configurations.
Consequently, neither of the studies was able to reach a general conclusion.
It was concluded, "due to the complexity of the large structure configur-
ation, the relationship between phase changes and the damage location still
needs more research effort” [6].

The report will cover two modal theories of damage diagnosis developed
by the author and his co-workers, using the change of dynamic character-
istics of the damaged structure. The modal frequency theory uses the change
of modal frequencies to establish damage functions, from which the intensity
and location of individual crack damage are diagnosed [7,8]. The appli-
cation of the theory to large structures and to multiple crack problems was
made possibie with the development of a general theory of circuit analogy
[9,10,11]. For ccmplex structures or crack damage configurations, there are
intrinsic uncertainties of the modal frequency theory to be included in the
present report, portion of which was presented by Ju [12]. The transmissi-
bility theory uses the change of the transmissibility between a known exci-
tation station and a number of response stations to diagnose the fracture
‘damage. Details of the theory and application are included in this report.
The feasibility and application of the theory were earlier presented by
Akgun and Ju [13,14].

[t is well-known that a structural member deminishes its load-carrying
capacity when a crack {s developed in the member [15,16,17]. It was shown
in the case history of a large structure that the frequencies of the struc-

ture decreased after an earthquake [18]. Numerous studies have been
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reported in the literature on the effect of notches and cracks on beam
behavior. étatic deflection of beams with abruptly changing cross sections
was studied by analyzing an equivalent uniform beam with modified loading
(19]. This approach was extended to vibration of bars with narrow slots
(20]. An experimental and analytical study was conducted earlier on narrow
cracks, in which bending frequencies of a beam with a 1.6 mm wide crack at
the center were measured [21]. It was found, for this particular configur-
ation, that analytical and experimental natural frequencies agreed when an
equivalent slot width of five times the actual width was used. Such a
relationship cannot be generalized, however, since it omits the effect of
slot depth [20]. A combination of the finite element and transfer matrix
methods was used recently to determine the effect of grcoves on the natural
frequencies of beams and, as an example, changes in the fundamental fre-
quency of a free-free beam with a slat at mid-span weré determined as a .
function of the slot depth and width [22]. The method of representing a
slot with modified loading [19,20] was extended to a study of the effect of
a ¢rack on the stresses and deflections in cylindrical shells and beams
under dynamic loading [23,24]. In the model, the cracked structure was
represented by an uncracked structure with the local reduction in stiffness
due to crack being accounted for by a pair of concentrated couples M located
a small distance ¢/2 on either side of the physical crack location. The
meihod requires the knowledge of static radial deflections at two points in
the case of a circular cylindrical shell from which the product Mc is deter-
mined and the model is calibrated [23]. The static modes of deformation are
then used to compute the dynamic response of the structure. The required
static deflections of the cracked structure need to be measured experi-
mentally or computed numerically to establish the dependence of Mc on the

crack depth for the particular structure.
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Chondros et al. [25] investigated the effect of a crack in a welded
joint on the dynamic flexural behavior of beams. Their model was a massless
cantilever beam with a tip mass. The crack at the welded joint was modeled
as a torsional spring. The spring constant was experimentally determined
from the changes in the natural frequency for different crack depths.
GQudmundson {26] using a first order perturbation method for small cracks,
showed that the fraguency changes are functions of the static strain energy
due to the crack. Gudnundsen like Ju et al. [7,8] related the strain energy
to the crack depth via the stress intensity factor. In the case of a
cantilever beam, his analytical results showed excellent agreement with the
results of an experimental study except when the crack was close to the
built-in end. He explained the disagreement near the built-in end by the
influence of the built-in boundary on the static stress intensity factor.
Gudmundson [27] recently modeled a crack by a static flexibility matrix
which accounts for the dicontinuity in the geneﬁalized displacements at the
crack location. He obtained the flexibility matrix ‘or a cantilever beam by
using static stress intensity factors. For the case of torsional vibra-
tions, he used the finite element mehtod to obtain the flexibility matrix.
Gudmundson's experiments with a cantilever beam confirmed his analytical
results very well.

Ju [7,8] proposed the theory that the stiffness-softening effect of
crack damage in structures can be effectively represented quantitatively by
a spring-loaded hinge at the cracked section of the structure. He further
postulated in his theory that the spring constant is completely defined by
the configuration of the c¢rack and is independent of 1ts location or of the
frequency of osicllation. The determination of the effective spring con-
stant, hence, can be made experimentally ar analytically. One of the ana-

lytical techniques for the determination of the spring constant is by
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equating the strain energy stored in the spring with the surface energy
gained through the creation of the crack surface. The fracture-hinge theory
has recently been verified by experiment to be reported later. A portion of
the work will be presented by Ju and Mimovich [28] at the International
Modal Analysis Conference and published in its proceedings.

The numerical analysis, used in the present report, is based on the
general theory of circuit anélogy, which was initially develcpoed in Russia
[29] ang was later generalized for structural dynamics by Ju and Akgun
[9,10,11]. The fundamental principle lies in that the beam equations with
the assumption of modal shapes become algebraic and are mathematically
equivalent to the Kirchhoff's circuit theory equations. ODetails were
reported in [L1]. The work has been generalized to include damping ard
extendad to beams of non-uniform properties (geometrical or material). In

this revised form, the general theory of circuit analogy is included.




CHAPTER 2

GENERAL THEORY OF CIRCUIT ANALOGY

The structures considered in this study .ar.e beams and plane frames whose
motions are described by the Bernculli-Euler equation with damping. The methed
used to analyze the structures is the electrical analogy method. The present chapter
is devoted to the development of the analog circuils and circuit equations for 2 ceam
and for a general frame with and without cracks. First, the complex Young's moedulus
and the types of damping which can be incorporated in the structure model are

studied in the next section.
2.1, Types of Damping Encompassed by the Model

2.1.1. Internal Damping ~ Complex Young's Modulus
Metals at low stress display linear viscoelastic Sehavier [ 30] The general stress-

strain relation for a linear viscoelastic material is ziven by [ 31].
(CQ+51DL+ e +a.,,.D,, ':‘,..)G= (bcﬂ"b 1D1+ e ‘:'mem'!'...)t (2.1)

where g, and be are constants and J, denctes the &th partial derivative with respect

to time. When ¢ ard &£ vary sinusoidally with time, J, = (iw)*, and

Lz Be) = Ey(w) [L+1 6()] (2.2)

[y}

woere £(w) is the cormplex Young's modulus, £4(o) is the dynamic Yeoung's moduius
and é(w) is tke loss or damping factor. The real part of £(«) is termed the storage
modulus and the imaginary part is the loss modulus. For low damping materials {3 of
the order 0.1 or less), variation of £ .with frequency is slow. For maay materials of
engineering interest, £y a:.{d 6 may be treated as constants. Common metals such as
aluminum and magnesium, for which § is very small, fall into t.h.s cé.tsgcry [3_1.,

Pp.27,137). A type of dzmping whick is sometimes used in Sexural and lengitudizal
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vibrations is the internal strain velocity damping (viscous) for which the constitutive

equationis . .
c=Eye+bD; ¢ ' (2.3)

where the second term on the right is the damping stress [32] For harmenic

vibrations,
g _ o~ . o

which yields a damping factor proportional to freguency. Experimental evidence
contradicts such dependence of damping on frequency. A more realistic damping
factor may result if higher order time derivatives are used in Eq. (2.3). Fowever, the

ping force in real siructures appears to be in phase with the velocity but
propertional to the displacement [ 32 p.76]. Such demping is termed structural or

bysteretic damping. The constitutive equaticn can then be written as
c=E4 ¢ +ide. (2.5)

The complex moduius for siructural damping then follows from Zg. (2.3); that is,
id .
E=F4(1+ E’_) (2.8)
d

4 . . s - .
where E—:s tte structural damping factor which is independent of frequency. in this
d

stucy, £ will be used in tke ferm given by eq. (2.2) without referring to the type of
damping.
Tae deflecticn of a beam under ‘ransverse vibration, excited by a sinuscidal

fcree, is governad by [ 31 p.196]

ﬂ. ﬁ* ] [ 7T :

-fylet¥t=0 : 2.7
[dé" J

where £ = z—'.s the normalized adial coordinate, ¥ = y(¢) is the complex modal shape
and
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_ pelLt _ ﬁé
B == (L+16) (2'8,)

2r4
where 83 = Lz.-%— and 84, at resonance, is the undamped characteristic value. §4,
d

near resonance, will be called the "complex characteristic value”. When § is small,
. 0
B~pBy(l—i el (2.9)

In the study. however, exact values of 8 are used.

At this point, 2 clarification on terminology will be made. It is appropriate to cail
y the complex modal shape, and this termm has been used in tke literature. The
physical shape of a damped beam under forced vibration, however, cannot, in general,
be referred o as the modal shape. This is a consequencs of t!:'xe fact that tkhe physical
beam deflection cannot, in general, be expressed as the product of a time function
and a space function. The argument can be illustrated by taking tke real part of the

complex deflection. Namely,

we =Refy ' ] = ym () cos [wt ~ (8] (2.10)

wbere w, is tze physical defiection, and y, and ¢ are the magnitude and phase angle
of the complex mocal shape y, both of which are functions of ¢# and ©. Crnly when
¢ = 0 (Le., no damping), can ¥, be referred to as the modal shape. In this study, Ym

is tarmed the amplitude of deflaction.
2.1.2. External Viscous Damping
When there is external visccus resistance Lo the transverse harmenic vibrakion of

a uniform beam, tze governing equation is again of the form of Tquation (2.7) where 2

is now defired as

_{pef —-ic o) L*

where ¢ is the coeflicient of viscous dampirg. Therefore, the methods cf this study
are also valid when the damping is of the external viscous type or 2 combination cf

exterzal and internal types.

e i ma o o . _A

Y AU

2 m

-
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In the remaining part of the chapter, the basic circuit analogs of a beam and a
generzl frame with cracks are derived based on Ea. {2.7). In the frequency theory
(Chapter 3), the structures are assumed undamped and therer;om g is real. In the
transmissibility theory (Chapter 4), damped structures are considered, for which g8

is complex. The same analog circuits, however, are used in both metheds, with 8

chosen properly.

2.2. Basic Analcg Circuits

Keropyan and Chegolin gave the T- and [Icircuit analegs of vibrating beams( 297,

" The anelog circuits will be rederived here. The complex mode sbapes of a Bernoulli-

Euler beamn element under transverse vibraticn are given by the solution to Equaticn
(2.7). Tkatis,

y(¢) = Acoshf¢ + T sinh 8¢ + Ccos B¢+ D sin B¢ (2.12)

Four variables are associated witk sach end of the beam element, namely, deflecticn,

y, slope (or angle of rotation), ¥', resisting moment, M, and stezr foree, V (Figure 1).

From Egquation (2.12) and its appropriate derivatives at ¢ = 0, the variables at the left

end are cbtained:

‘y1=:'-1_+5 y1'=(§+ﬁ)%
iy = (1 -0)ELE v, = (D - 5)ZLE ' 2.1
iy = 72 1= ( ) 72 (213)

o

From the equations in (2.13), the four coefficients cax be solved for in terms of the

four variables. Namely,

-l + 2 ) iy -h )L
A= B= T
2= (y, = A i) D= (y +2 V)L (2.14)

2 c T 28

where h = L . The variables at the right-end of the beam element are obiain

E’Iﬁz
trom Equations (2.12) and (2.14) with ¢ = 1. Tke resultis

-
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y‘- !/_\-_'/l yz
" at | g1 Mt
vy Vs

Figure 1. Beam element under free vibration.

’

Vo= dy: + By g+ Cilih = DVing-

BH,L

y2'=Dyl%-+ Ayl,'i- E.Ilﬂ —CVlh

Ho= CEL+ Dyysifs aity ~ BV

Va = -By,—- c—- lei+ AV, o (219)
where

A= {(cosh 8 + cos §) g = (sinn 8 + sin 8)

2 2
o . i o
c= (cosn.u2 cos 8) D= (imhﬁz sin £) (2.18)

' Any four of the eight variables in Zquation (2.15) cax be soived or in terms of the
remaining four variables. The mathematical anaicgy between electrical circuits and
beams is based on the liner transform (2.15). The type and prope:":ies of the resulting
circuit depend on the choice of the inderendent variabies. In this study, angles of
rotaticn are az:.a.log;ous to voltages and resisting mcments are analogous to electrical

currents.

2.2.1. T Circuit >

When the ccndition sinf#0 is impesed, (£ is real for an undamyed -eam ) sicpes

and shears can be expressed in terms of resisting morents and defections. Thus,




from Eguation (2.15)

' Cas =aT -5 T |1
’.111'1 My

' hRT hAS -T S H
Y2 |~ —2%_ 2 (2_ 17)
W S =~T" S/h . T/h ||N

v,
2] 1 -5 -r/n -s/a|"

-

where A =

S =coth f—cot 8

S'=coth 8+c3t 8

T =csc 8~csch 8

T"=csc f+csch B (2.18
Toe first two equétions in (2.17) can be rewritten as

Yy = (Z+ZQH = Zefe+ £ y2 = ZeH —(Z v Zo)Ha + B2 (2.18)
where

r _ .
i (2.20

Z=-(S+T)

£

£, =(T'yz-5‘yx)2L :

Tze two equations in (2.1%) are tte Xirchhef's equaticns for the active three

terminal netwerk sbown in Tigure 2 (T sircuit) with slope and moment {y', M) being

team segment are simulated by the ports of tze circuil. It must be cbzerved that the

electromechanical znalogy described above does not simulate the diferentd

“

P

»on

eguaticn cf motion, bul instead the sclution based on the assumption of harmenic
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Figure 2. T-circuit analog of 2 beamn under f{ree vibratien

Boundary conditions at the ends of a beam element can be simulated as follows:

a. Free end or simply-suppecrted end, .f =C: the corresponding pert of the circuit
is left opex, which resulls in zero electrical current.

b. Fixed end, y'=C: The corresponding port is short-circuited, which rasuits in
zero voltage. The ot'be:' boundary ccnditions at these ends and the last two Zguations
in (2.17) are utilized to express the voltage sources, Dguation (2.21), in terms of the
moments, as will be illustrated with an undamped cantilever beam visratinz freely
Tigure 3). All of the circuit variables are real in this case. The KirchofDs voltage law
applied to the [ccp yield

(Z+ 28, +E,=0 - (222)

where 7 is the aralcg resistance. From the last equation in (2.17) with y, = {5 = 0,

. Y2, 8 -
V2=o=(7511-57:—)-&— (2.23)
from which
H 7
= " 1 ' D= n2r L
yz = AT < and 2, =(T) 'J‘—EEI,SS' (2.24)

The second equation in (2.24) is obtained from Eguation (2.21).




1 2
4 ]
A
¥12y1=0 Ma=V.=0
. |} Z Z 2

Figure 3. Cantilever beam and its T-circuit analog

The substitution of Eguations (2.20) and (2.24) into (2.22) and the fact that X,#0

result in

"2
%L— S=0 (2.25)

which yilelds the characteristic equaticn of a cantilever beamm, 1 + cosh 8 cscf = 0.

In the derivation of Zquation (2.17), it is theoretically sound to impose sing # Q.
FHowever, during the numerical search of the undamped natural frequencies, sinf
may get very small at some point, or the structure may actually have frequencies at
or near sinf = 0. The solution to the problem lies in realizing tkat § is directly
preportional to the length L of the beam element. The problem can thus be salved by
dividing the beam into two sections and representing eacx section by a2 individuai
circuit. To illustrate the approach, an undamped simply-supperted beam is

arbitrarily divided into two elements with a length ratio of ieL (Figure 4). Witn

reference to the figure, the continuity conditicns in slope and mcment (voltage and
current) at the common boundary is preserved under the cascade concection of the

two basic circuits. The lcop equation then yields

14
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Figure 4. Simply-supported beam represanted with iwo elements
and its Anclog Circuit

(2, +Zy g+ 2+ Zpo)H12=Ejp+ Egp =0 . (2.28)

Since deflection is continuous at the interface (i.e., ¥12 = va1), it car be shown that

- Y126, 5y Y128257'
Z = "—‘_122[‘1 1 Eqp == ———IZLZ 2 (2.27)

where L; =0.4L, Lz =0.8L, f; =048 and f; =0.88 with £*=pc?L%/ E;]. From
Newton's third law V5 = Vo, or

_ —hH5(S) + 57)
Yiz = 5,+57

(2.28)

Eguations (2.20) a=d (2.28) tarsugh (2.28) can be combined to yield the frequency
equation

(Sy +52)2 (S, +S2%=0 (2.29)
It is to be noted that for the particular sectioning in this illustration, the same
probiem will arise at the £fth natural frequency where 8, = 27 and 8; = . Then the
same procedure can bes applied by further secticning he bearm. Better initial

sectionings are of cuarse possibie than the one presanted
g 3 B




2.2.2. IICircuit

Similar to the case of Equation (2.17) in the T-circuit, Eguation (2.15) can be
rewritten such that resisting moments and shears are expressed in terms of

deflections and slojes; that is,

v leve wre @ o -m |
u, £k by
i 5 ' -WL/8 =QL/B8. =W’ ¢ e
== i (2.30)
|4 ¢ W Pg/L -PgsL|V1
V. Y
2 o g -Ppsi -pg/ L")
where
P = (ceshf8 sin 8 + sinh fcos f)/ & P,=smh8:sm8
q @ =(coshfsin §~sinh fcos f)/a Q' = Fi—m—%ﬂ—q-
?J ) . W=s-inﬁ.5-—s'in5’ W,=cash8—c958
a _ a
ca=coshf cosf-1#0 : (2.31)
The first two equations in (2.30) can be rewritten as
My =(G+ Go)yy = Gy + I, . Ha= Gy = (G + Gelyz + Iz (2.32)
where G and [ are the anaiog admittance and current source, respectively, given by
G=(Q+ W)%{g-—. Go=:j%{£‘ (2.33)
L=(Qy~Pyd/h . [2=(Qyz- Ty)/h (2.34)

It

Equation (2.32) is the Kirczhofl's current equation for trze active thres termin

network shown in Figure § (Il circuit) with G and [ denoting an admittance and a
current source, respectively. Moment, M, and slope, y', are again analegous .to~
current and voltage. As an illustration, the cantilever beam of Figure 3 will now 5e
simulated with a Il circuit. The left port of the circuit in Figure 5 is shorted yielding

the circuit of Figure 6. The node voltage eguaticn is



M ¥1 Gy Y2 M2

I Y f}e6 G Iz

Figure 8. Anaicg Il-circuit for a Cantilever Eeam

(G+ Gely2' = 12=0 (2.35)
The last equation in (2.30) with y, =¥, = V2 = 0 yields

_ L@y2

Y2 = P (2.36)

The characterisiic eguation is cbtained by substituting Zguations (2.23, 2.34, 2.38)

-

into (2.35) with the result that

¢ - f-%f—= 0 (2.37)

With reference to (2.31), -Equaticn (2.37) is equivalent to 1 + coeskfcos@=0, if
1 —coshfcosf » 0. When the value of c{Equation 2.31) approaches zero, numerical
cormputation diverges. Similar to the approach in T circuil, the beam caz be

subdivided into elaments as described in the previous section.

17



2.3. Simulation of Crack with Circuit Analogy

A cracked section in a2 beam is modeled following the method of fracture

binge (7,8]. Tke effect of a crack is to introduce local fexibility in the beam. Tre

slope of the mode shape is discontinuous at the cracked section. The crack can thus
be mechanically represented by a torsional spring of spring constant x. The
. H. . -

discontiruity in the slope is given by &y’ = rat where M. is the resisting moment at
the cracked section. Such a discentinuity is analogous to a voltage drop in the cirzuit
theory, when slope and moment are anelogous to voltage and curreat, respectively.
The crack can tken be simulated with a resistor of resistance ~1/ x. Eence, a beam
with a single crack is represented by two circuils (T or II) jcined by-a "crack
resistance,” =1/ «.

The derivation cf k is tased on eguating the energy stored in tze torsional spring
to tl';:e increase in strain energy of the beam due Lo the crack. For a plane strain

cTack, this approach yields [7,8]. .

7
= E - [ AL (2.38)

Al

where ¥y = %— is the relative crack depth (Figure 7) and f is the dimensionless stress
ﬁtenﬂty factor for symmetric cracks given by

7{7) = (1=)™5[1.122 — 2.362y + 4.287/° ~ 4.88%° + 2.8453v* - 0.5637°] (2.39)
The analysis of the next chapter will indicate that the crack intersity is quantifed by
the following condimensional aumber:

Q== (2.40)

Equation (2.38) reveals that © is a function of the beam slenderness ratic, 25/ L, acd
the relative crack depth, 7. The analysis indicates that as the value of O increases,
the reduction in the natural frequencies of 2 beam also increases. Eence, of the two

beams with a crack of the same relative depth, at the samse relative location, the

18
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plane-strain h=2b
_ Mode I cracks
i~ ‘ e
_ L _ v ! “T i
! vi ‘
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i L

(a)

-L——- L*-—b% torsicnal spring constant, «

BAUEE

(b)

Figure 7. Crack geometry and equivalent fracture kinge

frequencies of the more slender beam will experience smaller changes. Therefore, @

is called the "sensitivity number”,

" 2.4. Analog Circuit for A Plane Frame

Xeropyan and-Caegciin presezted scrme examples of the agzlicaticn of elecisical
" analogy circuits to the soiction of static and dynamic frame problems [29]. The
approaches presented by them to frames with freedom of lateral mction invelve an
iterative soluticn cr a seve;a.l step procedurs. In the former, the amount of sideswvay

is guessed and iterated cz. In the latter, toe frame is first restricted lateraily, the

s

reaciions at the restrictions are solved for, ané the sidesway is then computed. Zo

of these approackes become comrlicated aad usecsconemical for mulli-story frames.
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Keropyan and Chegolin illustrated the latter approach with a static one~si’.ory frame

problem. Taeir examples of dynarmic frames involved laterally constrained frames.

This section expcunds a generic meodel of a two-dimensional multi-story frame
(Figure 8) with n stories and m spans (thus m +1 anchors). Damage diagnosis on such
a frame using both the frequency and tte transmissibilily methods will be developed
in later chapters. In the study of the frequency method, free vibration of the frame
‘with and witout a crack is analyzed from which the characteristic equation is
derived. In the developmexzt of the transmissibility method, transverse dedection at a
certain location is computed under 2 sinusoidal excitation ferce. The aﬁalog circuits
are the same in both metheds with the exception that, in the second metked, £ is
cormplex and sorme additions are made to the circuit. In this section the circuit
equaticns are derived in their mest general form to be applicable to both methods. A
formalized scheme is developed for obtaining the circuit equations of a general frame
with or without cracks, from which the modal frequencies or desired kinetic and
‘kKinematical quantities can be computed In the T-circuit analogy, the circuit
equations for the siructure are develcped 'L.‘::cugAb. the mesh current (moment)
egquations. Eence, the unknowns are the moments 2t the Zame jeoints and at the
cracks. There are p-1 unknown moments at a frame node whers p heams join
together. Zecause the moment is continuous across a crack, there is one unimown
momeznt for each crack. It follows that the order of the resulting linear systam, whick
is equal to the number of unknowns, is [n(3m +1)+k +2] for a frame with & cracks a=d
cne excitation, oze of the unkmowns being the value of the kinetis or kKirematical
c_uaa.tity at the desired location cn the structure. Cn the other hand, iz the [I-circuit
analogy, ncde voltage (slope) eguations lead to the circuit equatiocs. Slope is
continuous at a frame joint; therefore, there is cne unknown slope fcr each frame
joint regardless of the number of beams connected there. However, there are two
unkmown slopes at each crack location, one on each side of the crack. In other words,
slope is discontinuous across a crack. The structure is assumed rigidly fxed at the

ground level; hence, the slopes are zero at the anchors. The crder of the syste is
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Figure 8. Gezneral n-story.m-span frame structure
thus [n(m+1)+2k +2] with II circuits. Tke ll-circuit analegy is therefore preferred

over the T-circuit analecgy, since the order of the sysiem for & < 2mn is smaller in

the former.

The procedure io obtzin the circuit equations of a frame siructure are outlined

next.

(1) II circuits sirmulating individual columns and girders joiming at right angles are

interconnected such that the boundary conditions at the analog-frame joints are

satisfed. (It will be shown that a network dizgram need not actually be drawn.)




(2)

(3)

(5)

(6)

(M

(8)
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For each crack present on any element, onme more [I circuit and ore crack
resistance (hence, two mcre uniknown slopes-voitages) are adced to the netwerk.
A girder or a columr with p cracks is thus simulated with p+1 circuits
connected in cascade via the crack resistances The first and the (p+1)¢h

circuits are then connected with the rest of the network according to Step 1.

The beam element with the excitation is divided into two elements at tke point of
application of the excitation and is thus represented by two Il circuits instead of
cne.

When a kinetic or kinematicai quantity is desired at some locaticn on the frame,
the corresponding beam elerment is again divided into two beam elermernts at tke
desired location and represented by two Il circuits. Steps 3 and 4 are sidpped in

the frequency method

Kirchhoff's current law is written in terms of the node voltages which correspond

to the angles of rotaticn at the frame joints and at the cracks.

Kiretic conditions 2t each floor level and shear conditions at the cracks, at the
excitation locatior, and at tke location where deflection or any sther quantity is
desired are applied. This allows the lateral motion of the flcors to be ceomputed
directly.

This step is performmed when the frequency rmethod of diagnesis is used. Under
free vibration, the coeflicient matrix ottained in Step 3 must be singular. If the
damage parameters (Le=., location a=d severity) for each crack are k—own. the
ché.racteristicvvalues of the structure, {3}, can be detsrmined from iRe zero
determinant of the coeflicient matrix (the forward predlem). If the
characteristic velues are known, the damage parameters can be solved by using

the characteristic equation (tke inverse problem).

: 4
Wher the transmissibility method of diagnosis is used, the linear system of

equations is solved for the deflections in terms of the excitation force.
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The approaca taken here results in a formal scheme which can te appiied to
frame structures without referring to an actual network diagram. Reference is made
to Figure 8. The word "wall” will denote the union of all the columns on the szme
vertical lire. Each node and each beam element is identified by a number. Numbers
corresponding to th.e nodes are encircled in the figure. The numbering order for the
beam elements begins at the left lowest column, proceeds up through the columns on
the first wall, returns back (o the second anchor, proceeds up vertically, and
continues in that order. Once the columps are isbed, girders on each Joor are
numberad progressively from left to right starting with the first floor and continuirg
on with the upper floors. Quantities related to a beam element such as G, P, Q, =tc.
ere subscripted by the number of the element. Each node is numbereﬁ by the
column under the node. If there are v cracks on a column (gir:ier). the original
aumber cf the beam element refers to the uppermoest (rightmost) segment cf the
columa (girder) which is now represented by v+1 beam segrments. The other
segments are numbered following tke largest’ pumber in tbg scheme. Duve to
discentinuity cf slone at a crack, two new nodes are crezted on toe two sides ¢f each
crack. The locaticn £ on the structure, henceforth referred to as ihe resgonse
station, denotes tbe location at whick deflection or any other gquantity is to be
computed. Cne mor= node is thus created and one more [I circuit is added. Another
node is added on the column 2n +2 where the force is applied. These last two nodes
and the beam segments below (ta the left of) them are pumbersd the last in the

numbering scheme. -
2.4.1. Analog C."Lr::u;it Equations and Boundary Conditions

a) Noda] Equations:
Figure Sa shows a typical node 7 at the intersection of cclumn elements r, s and
girder eiements P, ¢. In reference to Figures 8 and %2, the sum of the branch

currents eatering the node ~ is set equal to zero. Namely,

- A

A e e a
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(yi." = yr")%() + (yJ" "Ur')Gqc * (yk' -yr')GrO + (yl' - yr')Gsc
. "yr'(Gp'i'Gq+Gr+czs)+fz:sé_[ql+fr2—[sz=o (2.41)

whez"t: (%' = y,') is the analog voltage difference between the nodes 1 and r and G,q is
the conductance which connects these two nodes. The current sources appearing in
equation (2.41) are dependent on the tra:ﬁsve:se deflections of the two ends of the
beam elements to which they corresgond. Under small deformation theory, vertical
deflection of the nodes shown in Figure 8 is, by second order approximaticn, egqual to
zero. Thus, in Figure Sa, ¥, = yq; = 0. where 3,2 2nd y,, dernote the deflections of
the right end of the pth girder and left end of the gth girder, respectively. I, in
addition, the nodes i and j do not bound cracks, then ¥, = yz2 = 0. Comsecuertly,
Igy = [;2= [y = [;2 = 0 from Equaticn (2.34). On the cther and, [, for instance, is
noé. zero since, in general, yp; # 0 2nd Y-3 =¥y = 0 (l.e., sidesway is allowed).
Upon substitution of equation.(E.BS) into (2.41),

"yr'("l'pxgp +Nq1&y * S+ 7s1%s) -yi"’?plwp -yj':nqlwq

"yk"'lrl;yr ‘yl'n:IW: + [Ef_rﬁ']o ([pz = Iql + 11'2 -[sl) =0 (2'4-'2)

7

0

®‘P@ r t
S N 1A RE—C

junction node crack nodéé;

4

(a) ® (b)

Figure S. Typical Nodes on the Frame

- -
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_(&Zr8/Lyw . |zI8

where l-ma..- To'

chesen for the frame.

In the formation of crack nodes, Figure 8b shows iwo nodes, r and ™, across a

-

crack on a beam element. Xirchho's current law is written for the node r:

(Yg' =¥ )Go + (T =¥ )~K) = %'G + L2 =0 (2.43)
wkere 7.’ is the rotation of the node 7 and the ccnductance —¢ represents the crack.
Tkhe nodal eguation for the node 7 is cf a similar form. Zguation (2.43) is valid
wihether the crack is on a girder or a columr. The same steps which led to ecuaticn

(2.42) yield

@ — 1 - !
Yr I T Bgiie) | T | BE(1+ie)

The coce ¢ (Le., the respense statice) or the node urcer the force in Figure 3 is

the sarme as thal in Tigure Sa whken the branches p and ¢ are removed. The ncdal
equation for suck a ncde is then obtained frorm Zquation (2.41) cr (2.42) by setiing all

of the variables with a subscrist p and ¢ equal Lo zero.

(36

b) EQHFH’-V amad ﬂng*{nﬂﬂv! Qwr-'“';gﬂs;
From the small defcrmation theory, points cn girders ca the same focr ievel will

have the same horizontal displacement. Namely,

Yijf SYnety SYmemir = 0 TYmaey T =Ll FF12 (2.45)
Also, %2 = WKer1. ¢ = L..n=1 0On the other hand, defection continuity across a
crack implies that deflections of the nodes r and * in Figure 9b are equal. Deflecticn
is continuous at the excitation node a;:d at the node ¢ also (Figure 8). Thus, there are
n+k+2 unknown deflections associated with the {rame, k& deroting the tctal oumber
of cracks on the frame. If the horizontal displacemeznt of the ith floor is designated
by % (yi =wz, t=1..n), an [n+k+2]-vector of displacements ‘and an

[n(m +1)+2k +2] - vector of rotaticns are cbtained as
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T
Y={v. Y2 ¥Yn Ye, " Yo, Yr Yeb

[ d
4

Y =1y o Yntmen Ve, T 0 T YW (2.48)

where Y. designates the transverse deflection at the ith crack and Ve, and T/
designate the rotations immediately to the left of {(below) and to the right of (above)
the ith crack whick is on 2 girder {(column). Tke subscripts f and ¢ denote the node
under the force and the node ¢, respectively. The unkmown deflections canp be reiated
to the rotaticns via the kinetic equatiox.:s. defining the sideway motiorn of the floors,
and the shear continuity conditions at the cracks. Cross shears at the column ends
are the axal driving forces for the fcors. The axial acceleration of a ﬁocz.': which is
composed of all the girders on the same level is the same as the transverse
acceleration of the column ends at the nodes wkere the cclumns join the fccr. Thus,

for the itk Acor (Figure 10)

m pem-i g+l ~1 ,
2l Vnsia = Vimeiedl = 2 254+ 25 25L& (2.47)
j=c y=p J=

- .

woere p={m<ljn+(i=i)m+1 in accordance with the numbering crder described
earlier and k; is the tstal number of cracks on the itk foor. ere is cne such
ecuation for each focr. Thae lerm in the braces on the right-hand side of Zguation

a

(2.47) is the total mass of the it Scor. When there is no crack on the ith focr, Le.,
%y = Q, the second sumrmation term on the right-hand sice is absent. When thereis a
crack in, {or examgla, girder p+1, Ly, denotes the length cf the right segment of
this girder. Mass gqL; of the left segment is tzen inciuded in the second summaticn
term in Equation (2.47). Equation (2.47), upon substitution cf the iast two equaticns
in (2.30) for shears, will relate deflecticns t;: rotations. Figure 11b scows the diagram
of a frame with m=1 n=2, k=2 A harr=onic load is applied to the frame and a
response station, &, is shownl Taere are tea nodes, ten beam elements (kence iten

interconnected II circuits) and six unknown deflections. The £ost Zcor has one craci
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on it. The kinetic equation for the fArst Socr with ps = 05, has the form
Vig + Vag = Voy = V1 = 2%y 105(Ls + L) (2.48)
where, for instance,
1 vyt
Vaz = 3:@7113 =Py 8/ Ls)
Py, = Pyys)
V?I = _l-_ Q7:y:o + W7'y7' + ( 7y1 7y7 5’7 (2.49)
ke L,

fromm EQEation (2-30) 'N‘.th ysz - ‘ysz' = O' yl = Ym = y72, y:l :yzz' - y,‘,l" y7 =y721
Y9 =y’ Upor subsiitution of shear expressions, Equatica (2.49), ard the similar

equations for Vjz and V,; into Equation (2.48) the following equation is obtained

{4+l 1Rt ] . . .
, mem—n Y ——— '
=11 famisl, i lzmeget
v“' atp—— "’n-q -} ?~I—— -T— . v.... “"T o?-.'—
U } i \ ]
I ? boa 1 g+l ! =2 ! s=m=1 T Seor level
— | —-‘—— ! . ! ——
! ari,2 =nei L 2-
V - SSmm— Y - wn—— p—— '{’___Y- - aip——
e ariL,d weTes
a={
o — ’. . . L] .
g Fme
"
7

Figure 10. Cross shears in the colurmns adjcining the itk fcer
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Figure 11 A two-story, single span frame (2) without crack, (b) Witz two cracks,
one excitation and a response station t. (¢) Electrical Analog of the frame.
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{%L E (713P1 + M2sP2 + MeaPs + MaPr + NealBs + Ba) I

~ N23PY2 ~ MzP7'Y2 g = (Mm2@y = 12220y

- nz2Wy2 + ‘("732473' - N72@7)ys ~ e Wry? : (2.50)
where
)
(& [i—‘-]
™ = _ﬁ'—T (2.51)
(E)e L_o_}
)

In Equation (2.51), 1 is the number of the beam element or the bear segment and J is
an exponent. The kinetic equation for the second floor can be developed similarly.
Applicaticn of shear continuit:y at a crack will now be demonstrated for the crack on

the first focr (Figure 11b). Hence Vez = Vs, cr from the last two of Equatior (2.30)

L e o PayeB 1 o s mr . PsYafs -
x:('/ayx-'gaya"%:—5‘)=h—;(93ye"7/sy3-‘ 235) (2.52)

since Ya; = Ys2 = 0. The following expression is obtained by rearranging Equation

(2.52) and noting that ks = hg and === —:

B _
{i ](Ps + Pa)ya = Way — Weys + Qu'yd — @574 (2.53)

Skear continuity at the response station yields an equation similar to (2.33). Tkhe
shear discentinuity at the excitation location, on the cther hand, can be exgreszed as

Vg = Vu + Fm (2'54)
which yields

[z—!' ((Pi+ Polyy = Pyyr] = (@ = Q)yy' = Wiy + Ay (2.55)

1




.
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c) Masﬂx ?g”a‘:gne ‘QI 2 Siﬂﬂﬁv‘g‘ ?rs—wg Q;v-«:&]qm-

For the general frame structure, there are n kinetic equations of the form cf
equation (2.50), k& +1 shear-continuity equations (k equations for the cracks and one
for the response ;tation) of the form of equation (2.53), and one shear discontinuity
equation given by (2.53). These »n+k +2 equations can be arranged in a matrix form to

solve for the deflections in terms of the rotations, namely,
L 1f I - ]
Y=\ OZ' XY =hsin€| (2.58)

whers € is 2 column vector whese entries are zero except for the last entry which is
unity and &, is the value pertaining to the beam elemext with the exzilation (for the
example of Figure 11, h, = h,). On the other hand, the nodal ecuations (2.42) and

(2.44) can be arranged in the form

{ I ] Hi-Uy'=0 (2.57)

where lis the vector of current sources and is related to the defections via Zguaticn

(2.34); that is,

i= —Hgy (2.58)

fter Equation (2.58) is substituted into Equation (2.58), then Iquaticn (2.58) izto

Equation (2.57), and it is noted that H H, = X tue siope eguation results:
XZT'X-UY' =h, X Z'e (2.59)

This is the gensral form of the result for any planar frame with any number of cracks
on it. The coefficient matrix in (2.59) is symmetric. Tke individual matrices, in

general, have the forms




n(m+1) 2k, 2k, 2
X‘": lx(mz) Fc | OI

T
E° lEcmﬂlH‘ O’

_l...__.._ -h——
= |- [ : ’!' -+ IL1

I ] !
. 1[ I ﬂl#llo:H;l

nim+1) 2k, 2k, 2

Us A |4

Do st

T l i

ATlB |0
Us=|-=t==i==4V,| .

410,80

Vi

with ¥ and ¥ ' arrenged 2s in equation (2.48)

¢ Y

¥e
Y.
Y= -
Yr
)

3

' Ls.
n ke ko 2
ST R
Z 1 C 0
cmdbmata
cIyD. |0,
N
| }
010 I D;
_———-l——’—-.
NT Ny
2
e

where the subscripts ¢ and g refer to cracks on the columns and oz the
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(2.80)

(2.81)

(2.52)

girders,

respectively, with k. and k; being the total number of cracks on the columns and ¢a

the girders (k =k +k;). Fence, V. and ¥,, for example, are the

vectors of

deflections at the column and girder cracks, respectively. Y. is the veactor of the
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borizoctal flcor displacements. y;, and Yy, are the transverse deflections at the

response staticn and at the excitation location, respectivety. It snould be noted that
{ : . : :

X( ’. U, and Zg for the case of no crack are modified when cracks are introduced on

the frame. The matrices U and Z are symmetric.

When the rotations are to be computed, ¥' can be sclved for from Equation
(2.59). When the deflections are needed, V' can be solved for from (2.57) and

substituted into (2.56) from which ¥ can be obtained. This yields
5 -
Y=heFn [E—L(X‘U"X" -2) 'e ' (2.63)

Witk ¥ ard y' known, resisting moments and shears can be computed from Zquation
(2.30). Woen the fr=e vibraticn of the structure is of interest, F,, =0 and the
coemcient matrix on the left-hard side of (259) is singular. The determinant of the
coeflicient matrix then yields the characteristic equation of the structure. A
computer program is written to compute the deflections on a general frame
structure. The listing of the program is given in Appendix.

A formal procedure will now be described to establish the above matrices without

the need to draw the actual analog circuit.

2.5. Procedure to Establish the Hatrices

In the following, for simplicity of explanation, croperties of the beam elements
are assumed uniform throughout the frame except for the lengths, Thatis, ny; = Lior

alli, 5.

1. To establish the U matrix

U is composed of the coefficients of the rotations y;.;" in equations such as (2.42)
and (2.44). The ith row in the matrix stems from Kirchhoff's current law writien for
the ith node, the first n(m +1) rows being !or the nodes on the frarme joints, the next

2k rows fcr the nodes at the cracks, and the last ‘wo rows for the nodes at toe
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excitation and response locaticms. The procedurs to establish the entries of the

matrix is cutlined below.

& The diagonal entry uy will be the sum cf the & values(Zquation 2.31) of the
beam elements adjoining at the node for which Kirchhoff's current law is being
written. If this node is at a c;.:-ack. then uy is given by the @ value of the element
ending ﬁt this node minus the A value for the corresponding crack, where

- 1
eﬁg(li"id) )

And,

A The diagonal eatries of B, and B, will thus be of tke form (& = A.).

b. The oﬂ-d.ia.gonal entry wy; will be ¥, (Equation 2.31) if the nodes cotr;éspcndir;g
to the columns 1 and j of the matrix are iinked directly by the kth beam element. If
these two nodes are linked by a crack, Le., they are the nodes cn the two sides of a2
crack, then vy is give.n by the X value of the crack Otherwise uy; = 0. Due to
symmetry, wy; = Uz, The ith row of Ug in Equation (2.58) is unchanged relative to U

of the no-crack (& =C) case if the 1th node is not adjacent to a cracked element.

2. ctahlich tha rrakw

The matrices Z and X stem from the kinetic equations and skear conditions. The
first n rows in them represent the kinstic equations governing sidesway of the n
flcors. Tke next k+1 rows correspond to the shear continuity conditions at the
cracks and at ihe response station. The last row results from the shear discontinuity
at tze excitaticn lgcation. Z consists of the coeficients of deflecticns y; and s -

entzies can be generated as follows:

a. The diagonal entry 24 for i=1,2,...n will he the sumn of the 8, values of all the
girder elements on the ith foor plus the sum of the P values(Squation 2.31) of 2ll the
columns adjcining at tke ith floor. If 2 column adjacent to the ith foor is cracked,
then only the P value of the column segment nearest to that foor will be inciuded. 5,

can be expressed in terms of the characteristic value 8y 2s £ = 25 If the frame is
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homogenecus in properties, then e, = L,/ L. The diagonal eatry zyz for the next k&
rows (Le., the diagonal entries of the D matrices) will be the sum of the P values of
the two beam segments on the Lo sides of the corresponding crack zy for ithe last
two rows(Le., the diagonal entries of the N, matrix) will be given by the sum of the P
velues of the two beam segments joining at the excitation node and tke response -

node, respectively.

5. The off-diagonal entry z;,, of Zg will be the negative of the sum of the &'
values(Equation 2.31) of all yncracked columns joining ith and (i+1)th doors.
Z;i+1 = 0 if all the columns between those floors are cracked zy; =0fornxj2i+2
and zy; = z4. Zois, hence, a tridiagoral symmetric matrix. If any one of thé columns
adjacent to the ith foor is cracked, then 2z for 1Si<n, n <jsSn+k (Le., the
entries of C, ), will be zero except for that (these) j value(s) which correspond(s) to
tbe deflection(s) at the crack(s) nearsst to the ith floor, in which case Zy is equal to
tbe negative of the P’ value for the column segment which links the ita floor to that
crack. If ncne of the columns adjacent to the ith foor is cracked. then itk row of C.

is zero, and the ith row of Zg is unchanged relative to Zg of the no-crack, & =0, case.

C. 2y =0for 1<Si<n, n+k <jsn+k+2, (the entries of N,), whers k =k, +k,
« unless there is an excitation and/or a respornse station cn any column(s) adjacent to
the ith floor> In the latier case, zy is given by the negative of the P value for the

column segmect linking the ith floor to the excitation cr the response nede.

d %44 for n'<i<n+i; (the eniries of D,) will be zaro if there is no other
crack betwesn the (i-n)th column crack and the Aoor level above this crack.
Otherwise, 2, will be equal to the negative of the P' velue for the columr segmezt
which links the (i —m )th and the (i —n+1)th cracks.

& Ziis for Nk, <1< n+k, (the entries of D,) will be zero if there is no other

crack between (i~n —k.)th girder crack and the wall to the ﬁght of ihis crac
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Otherwise z;;,; will be equal to the negative of the .’5' value for the girder segment
which links the (i —n &, )tk crack and the erack on its rigat.

Hence, D, and D, are diagonal if at most one crack exists on each beam
element. If more than one crack exists on any column or girder, tken D. and/cr D

are accordingly tridiagonal syrmmetric matrices.

t. zj for n<isn+k, n+k <jsSn+k+2 (the entries of N,;) will be nonzero
only when the corresponding craci is neighboring an excitation or respornse node, in
which case zy; is equal to the negative of the F' value for tte beam ssgment linking

the crack to tke excitation or the response node.

3. !:9 ne‘:b”eb ‘hg g mztﬁx

X consists of the coefficients of rotations y;' in equations suck as (2.53), (2.53)
and (2.53). A square submatrix X( ) iz Equaticn (2.58) corresponds to rotations of the

frame joirts on the kth wall (Figure 8).

2. The diagonal ertry =) of X{k). which stems frogt the Kinetic eguation for the
ith floor, will be given by the & "alue(eq.a... o 2.31) of the colurmn {colurnn segment)
under the frame-joint node n(k=1)+i minus the § value cof the columr {column
segment) above the same node. If there is no cracked column on the kta wall, then

=® = @n-1)+i = n-yrier fori=l.. n-1and =} =) = Q'

b. The offi-diagonal entry =%l; = —W'areoi)eis . that is, the negative of the W'
value for the colurmin above node n(k=1)+i for i=1,..n—1 if the column of the kta
wall between the itk and (i+1)th floors (i.e., the column above ncde n(k —1)+11) has
neither a crack, nor an excitalion, nor a response station oa it. Ctherwise = "(") L =0,
and that entry on the ith row of F, or L, which corresponds to the rotation of the
crack node or tke exvitation or the response node nearest to and above tZe ncde
n(x—-1)+i will be equal to the negative of the #' value of the column segment linidng

the ncde n({k—1)+ and the said crack, excitation or response node. “.,g") =0 for
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j=ti+2 and =¥ = -z for i#j. (The entries of each X* are numbered
independently of the other submatrices.) X% is thus diagonal if each column of tas
kth wall bas at least one crack. Ctherwise it is tridiagonal Xm s unczanged relative

to X* of the no-crack (k=0) case if there is no crack on the kth wall.

It the cclumn below node n{k~1)+ is cracked, or has an excvitation or a
response node, then that emicy on the ith row of F, or L; which corresponds to the
rotation of the crack node, or the excitation or the respense node nearest to and
below the ncde n{k—1)+i will be equal to the ¥’ value of the colurmn segment linking

the two nodes. Except for this and the above merticned cases, entries of I, are zero.

c. The E matrices in.Equation (2.58) couple the crack nodes with the f;"az:e-joi.nt
nodes. Rows n+i through n+& of X (i.e., B, H and L, matrices) are fllled in as
follows: The entry on the matrix coluwnn which corresponds to the rotation of the
node on the left (or lower) side of the crack, at which the shear continuity condition is
being written, is equal to the &' value of the girder (or column) segment which links )
this node to the one on its left (cr beiow it). The eatry corresponding to the noce cn
the right (or upper) side of the crack is equal to minus the §' value of the segment
linking this node to the node on its right (or abeve it). These two entries are within
the submatrix H, (or H,). The entry corresponding to the node on the left-hand side
of (or below) the left (or lower) crack-node is egual to the W' value of the segment
linking these {wo nodes. Finally, the entry corresponding to the node on the rigkt-
hand side of (or above) the right-side (or upper) crack-zode is equal to the negative of
the ¥' vajue of the segment linking the two rodes. These “wo eatries can be within
the submatrices E H or L, depending on whethsr there are one or more cracks on a
girder (column) and on whether the excitaﬁon and response nodes are neighbors with
any crack E. =01t there is no crack on the kth wall: E; = 0 if there is no crack on

any of the girders adjacent to the kth wall
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d The diagonal entries of Ly are given by the difference of the § values of tke
two beam segments on the lef:t (or ilower) and rigkt (or upper) side of the excitation
or respcnse nodes. Lg is 2 diagonal submatrix if the excitaticn and response ncdes
are not neighbors. Cnly those entries of L; correspording o the nodes nearest to the
excitation or the respcnse node are nonzero and'are given by the # value, or the
" negative of it, depending on whether the ncde in question is on the left- cr right-hand

side, respectively, of the excitation or tke response node.

4. ks e f a cprneral nagas

If beam properties are not uniform throughout the frame (each celumn or girder
still hes uniform properties within itself), thez the following corrections are

necessary:

a. Multiply each term in the U matrix, except the A terms, by the corresponding

m velue, thatis, & and W, by 7.

b. Multiply each term in the first n rows of the X matrix by the correspending

ng value, thatis, &' and W' by 752

c. Multiply each term in the first n rows of the Z matrix by the corresponding 7s
value, thatis, P, and 7' by 75 and - By 7rs.

B/ Ly
Bo/ Lo

number of the beam element with the crack for which the ith row represenis the

d. Multiply the i*h rowof Z, n+l<isSn+x+2 by A\ = where ! is the

shear continuity conditiorn, cr of the beam elem:nt with the excitation cr the
response station. ~
The above procedure will now be illustrated with -m example.

Example: Tke three matrices will be written {cr the frame in Figure 11,




a. Frame without cracks (Fig. 11a) with different beam pro

uniform within itself). .
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perties (each beam is

€

v v v y4 yr %
N1+ d1o+ns1 s o s 77_5 0 nuf, Na¥i
0 Nafa+nals | e Ne1 s ¢ 72272
N7y ¢ Nu@s nalinals Nafs .0 e
v Y 817 Ny N1 @481 ¢ ¢
nufy 0 0 c 711( Q1+ Qs) e
E N2 e - e e 721( Q2+ Q1)
i (2.64)
Y Y2 Yr 7.-/
:fh:;Px"*';ﬂaPm 223+ 4a Py T2 = N3Py : -MmsPi"  =TasPy *
= Nas Py NP+l ++fieﬁs{ 0 - T23r?'
a WX 0 NP0
_ = AP’ = AzP7 : 0 Ae(Pa+Pc)]
(2.53)
Yy y2' E) Yy Yy ye'
r1'7120{"7224?:’.1::' 0 :‘nzqu"“’mQ{. N2y [n2¥) =520 |
0 nan': N2y ey | 0 naWy
Xz |-V ——————— rT - (2.88)
- ¥y 0 0 c |Qs' =@ 0
| -2 a 0 { ¢ Qu-@

PI —
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where, for convenience, the rotations and the defleciicns al the ncdes ars writien
above the corresponding columns cf the mairices. IL is noted that, for exampis,
7e1 =M1 and sz =752 (Bq. 2.51), that is," the beam segments 9 aad 1 ars the
segments of the same column and, hexce, have the same properties.

b. Frame with two cracks (Fig. 11b). The frame is aow assumed uniform in

properties except for the lengths of the individual columns and girders. Eencs,

8 s
7y =lacde; s 2= 12 atrix Uis obtained as

B Le
- | ! ! K
Q+Qxc+ds O 0 o ; O 0 | Ha c ; ¥
. ‘ l
| L
0  @+Q@ O me 10 0 o 0o} oo 7
. I | !
0 C  @+@+& 0 } . 0 | 0 Wy, 0 0
| !
! i
0 He 0 Qu+Qay O A : 0 o ; O 0
——————— - R — -l - - em en wn) @ ws = e - ,' -
0 0 7y 0 I@-A, A bg o, o0 0
: | i
U= | S §
0 0 0 W A Qg O o 0 0
_—_—em s e s = i- - - -] = = = —]
Ha 0 .0 o 1 0 o | Qe~As A 1 O 0
i . ' . i
1
0 0 s o 1o o0 | A Qe O 0
— em mm e ww — -— e U |
v, 0 0 0 0 0 0 0 l‘Ql-Gs o
.
! ;ym Wz 0 0 0 0 0 0 { 0 QZ-:"!lc‘
(2.57)

[t may be noted that the Srst fcur elerments in {he second row of U are the same 2s

LB

thcse in the second row in Equation (2.84) (except for the factors 7,;). This rew is
uncharged since node 2 is not linked to any crack ncde. The_ last tvo rows andé two
columes in Equation (2.54) are enlarged by flling with zercs and again appear as the
last rows azd columrns in (2.57). If the beams bad diferent preperties, t:.:en eack
term in U would be m;;ltiplied by the corresponding 7; value except the terms

A= EN N In the A; terms, the sexsitivily aumbers, &, are subscripted oy toe




40

original number of the column or girder on wkich the correspending cracks are
located. Eence, €, for instance, refers to the crack located ca the column numbersd

4 in the uncracked frame (Figure 11). It is also noted that @, ¥, P, etz. for the
cracked frame have different values frem the ones in the no-cracik case. The Z and X

——

matrices of the cracked frame are subsequently conjugated as:

[Px"'-”xe‘f‘f’z""p?‘:'ﬁs‘-‘ﬁa 0 : =77 ; o | -py "-""m'1
l
! l
0 PZ*P4+ﬁg | ‘Pz,' ! 0 I 0 -_92
__________ . _——— -
~-Py -P,; PP, 0 0 0
/A DN S . (2.88)
0 o |0 1P5+Pa 0 0
———————————— l~.— e e  ev—— — — — —— -
X 0 0 0 |P+Ps O
1
"Pm -Pz 0 O l O PZ*PIC
] i 1
Q=@ 0 @i-¢ 0  ~#7 0 : 0 o | wy -V
! i i
{
0 @ | 0 @ 10 w0 0 I o Wy
PRI R S l
] ]
1o 0 | Wy -# @ -alco o ! ¢ 0
X:= | x ! ' (2.53)
Wa 0 ] ~Wsa 0 : 0] 0 ! Qa’ -Q: l o] 8]
S U LU - — — _.{ ______
-, 0 2 0 0 0 e 0 IQQ -cz 0
. |
| W =W 0 0 0 0 0 0 0 Q@]

1. . {n pot . . .
woere XV in Eguation (2.58) and Squation (2.69) are basically the same since there

G

. 2) . .
oo crack on the frst wall The terms =%, and W, In X® i Equaticn (2.885) are
replaced Ty zeros in Equation (2.69), since nodes 3 and 4 are no longer linked

directly. As the column under the nede ¢ is cracked, the node 4 is now linked to the

e S ¥ W
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node 7 by the column'. segment 4 Therefors, 7, appears on the second rcw and
second column (which corresponds to ¥+') of Fe. The third row of X reflects the
cortinuity of shear at the column crack in Figure 1lb., The lower crack-nods 7 is
linked to the node 3 by the column segment 7 and the upper crack-nede 7 is linked
to the node 4 by the segment 4. §' and /' values are accordingly placed on the third
row. The consiruction of the matrices for the cracked f{rame is now complete.

Numerical results for tkhe frame will be given in Caapter 2.
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CHAPTER 3

THE MODAL FREQUENCY THEORY OF FRACTURE DAMAGE DIAGNOSIS
The modal frequency theory was introduced by Ju et al [7,8] to utilize
the measurements of pre- and post-damage modal frequencies in detecting and

identifying fracture damage. Each pair of fracture characteristics (y,e)

k’

the kth crack intensity and location, is defined by a damage function
(Y,E)k = Gk(Ri) (3-1)
where Ri =1 - (wi/mui) is the modal frequency variation, wg and w ; are

respectivaly the post- and pre-damage frequencies of the ith mode. For
k-number of cracks, therefore, (Zk +.1) number of measurements of frequency
variations are needed for diagnostic solutions. The solutien of Equation
(3.1) yields the diagnosis of the fracture damage in the structure. The
application of the modal frequency theory to the diagnosis of a single crack
in simple structures was treated by Ju et al [7,8] with the matrix methed.
The method in general, for a structure of N-beam elements with k-cracks,
requires the solution of a (4N + 2k) by (4N + 2k) matrix. The algorithm
becomes excessive for structures of large number of beam elements and/or
cracks. The numerical difficulty was overcome with the introduction of a
generalized theory of circuit analogy. The theory and its application to
multiple-crack problem and to complex planar structure were presented by
Akgun and Ju (9,10] and summarized fn [ll]. The basic modal frequency

theory, used alone, will encounter uncertainties, arising from (1) frequency

crossover, (2) inadequate measurement of change in modal frequencies and (3)




PV - -

closely packed cracks. The uncertainty of frequency crossover can be

jllustrated with two modal freguencies, w, and @ (without loss of gene-

:‘
rality let w g < wi) at undamaged state. After crack occurs the new mocal

o

frequencies are corresponding ;i and Iﬁ. I[f the crack occurs near the

inflection point of the ith modal shape but if the point happens to be near
the maximum moment section of the jth modal shape, w; may not differ too
much from Wy It is conceivable that, for the new modal frequency, we may
record 5} <y In that case, not knowing the actual damage configura-
tion., the diagnostic assemblage of freguencies may well confuse E& ta be
the new frequency of the ith mode and @, to be the new frequency of the
jth mode. The phonomenon is a frequency crossover; the diagnostic resuilt .
may be disastrous. Such phenomencn is most likely to occur in complex
structures, for which there are pairs of modal frequencies with close
values. The problem of frequency crossover cannot be handled determinis-
tically by the modal frequency theory. But the gransmissibility theory
presented in the ssqual should alleviate this very uncertainty. The rest of
the chapter will address the uncertainties of multiple cracks, which can
only be resolved by probabilistic means. The uncertainties can be ade-
quately illustrated with a simple beam structure with k-number of cracks.

A beam with k cracks can be represented by k + 1 circuits joined by
resistors simulating the cracks. The unknowns in the T-circuit analogy are
the moments (currents) at the cracks and at the ends of the beam. Hence,
there are k + 1 unknowns. On the other hand, the unknowns in the M-circuit
analogy are the slopes at the ends of the beam and at the cracks. There are
two unknown slopes at each crack. Hence, the-order of the system is larger
with I circuits. The T-circuit analog derived in Section 2.2.1 is found to

be more suitable for multiple-crack analysis. This section develops the
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characteristic frequency equation for the general case, estabiishes the
conditions under which multiple cracks become equivalent to a single crack,
and illustrates the inverse problem with k = 1. The beam is undamped and 8

and all other variables are, therefore, real.

3.1. Cantilever Beam with Multiple Cracks

Figure 12 depicts the analog circuit for a canti1eve} beam with k
cracks. Continuity of moments at the cracked sections is preserved via the
continuity of electrical currents through the “crack resistors”, -1/¢;. The

order of the system of mesh current equations is k + 1. Namely,

‘Zi-l,OMi—l + (21_1 + 21_1 0t 4t ZT,O - Ve, - Ei-l, 5 * 51,1 =Q

b

LMt (Tt Lot Ly T L0t VoM Bt E g1 7O

(3.2)
From Equation (2.21), the analog voltage sources {Ei j} are:
Eyq Tl 0 0. 0 0 0 [y |
-T S4 0 .. 0 0 0 y
SRR M RER)
Ek2 0 0 0 -T& %L 0 Yi
Ek+1,‘l L 0 0 0. 0 TS+l Tl J Y+l




where Y is the deflection of the ith cracked section and Yl is the
deflection of the free end. These deflections are solved for by imposing

the shear boundary and continuity conditions. That fis,

Y2 TV, 1= 12,000k
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Vs 2 = 0 (3.4)
L \ L2 | L“#l
4 1 |
;* a1 . \ b P }
; 5
12 | ; T 7
4
L L
L 4 - <y <,
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Figure 12. Cantilever beam. (a). With # symmetrical cracks.
. (b) Equivalent fracture-hinge model (c) T-circuit aralog.
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where the first subscripts refer to the numbers of the elements within the
beam and the second subscripts 1 and 2 denote the Teft and right ends of the
corresponding element. Substitution of the last two egquations in (2.17)

into (3.4) yields

(1/h) Zy = ¥m (3.5)

where y and m are vectors of deflections and mesh currents, and Z and X are

-

square matrices of order k+l given by

's.l+s2 T, 0 0 .0 0 ]
Ty Sy;#55 T, 0 0 0
7 = Q T3 S3+54 T4 -
- 0 Ten
_ Q 0 ¢ 0 Tl Sk+1‘
(3.6)
'Ti -Sp -85 T, 0 0 1
0 Ty =S5 =Sy Ty
o 0 0 Ty -85 -5
T
. . . . oo =Sy Siy
i 0 0 0 0 v Ten J

Hence, Z is a tridiagonal symmetric matrix and X is an upper triangular
band matrix with a band width of 3. y can be solved for from Zqua-

tion (3.5), provided Z is non-singular. That fis,

y = hZ b (3.7)




Substitutian of (3.7) into (3.3), and then the result into (3.2) along with

the analog resistances from Equation (2.20) gives

X'z - ym= 0 (3.8)
where
FS1 Tl | 0 .. 0 «O
gl Sl+:2+2618 . ;2 : cee s
+54%72048 ... .
U= 2 emiTe (3.9)
. . . cee Tk
0 0 0 v T S8y ¥28, 8]
with ej being the sensitivity number for the jth crack given by Equa-
tion (2.40). 8, is based on the total length of the beam.

J
For non-trivial solutions of (3.8), the determinant of the coefficient

matrix, which is symmetric, must vanish, yielding the characteristic equa-

tion
det(X'7Ix - Uy = 0 (3.10)

When the c¢rack spacings {ej} ang sensitivities {ej} are known, the natural

frequencies can be computed from Equation (3.10). In computing the matrices

in equation (3.10), the variables Si» T1, S' T‘1 (Equation 2.18) per-

-is
taining to the ith beam segment are computed using ey = (Li/L)s where 8 is

based on the total length of the beam.




3.2. Damage Diagnosis with a Single Crack

Damage diagnosis using the present mocel is accemplished with the
knowledge of frequencies arter the damage has occurred. Since the charac-
teristic equations of structures are in terms of dimensionless charac-

teristic values {8} from the measured frequencies {8} can be computed from

174

2
- L(%) (3.11)

When three measurements of frequency are available for the case k =1
(single crack), exact location, e, and severity, 8, of the crack can be
determined. The procedure will be illustrated with the cantilever beam
problem developed in the previcus section. The coefficient matrix in equa-
tion (3.8), with k =1, is of the form

. Ny ny.
XTZ'J.X - U= [nll X 15298] = H(B,e,0) ' (3.12)
12 722
where the {8} values in equation (3.12) are the post-damage values computed

from equation (3.11). The damage characteristics e and 8 are to be deter-

" mined frcm the determinant of H, which can be written as
det[H(8,e,8)] = det[H(8,e,0)] - Zeeh11 =0 (3.13)

where e = Ll/L is the normalized crack location. It is noted that when 8
assumes the pre-damage values B, det[H(s,e,0)] is equal to 0; that is, this
term is the characteristic equation for the undamaged (8 = Q) beam. There
are three equations emerging from Equation (3.13) for the three known

characteristic values.. A numerical code for damage diagnosis has been
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developed in which e is varied through the range (0,1). 8 is computed, for
a given e, using the first known characteristic value in Equation (3.13),

namely,

(1)
8(e) = detin?l .2.0)1 (3.14)
28t tn,.
11
where the superscript on 8 denotes which characteristic value is used. Then

with the secand known characteristic value, 8(2)‘
det(H(8(%) e,0)] = 0 (3.15)

where the value of 8 is now substituted from Equation (3.14). A zero-
searching routine is used to find the roots of Equation (3.15) which, in
general, yields multiple solutions for e. 3(3) can then be used to locate
the crack. With e known, @ is computed from (3.14).

In the case when the beam deviates somewhat from the Bernoulli-tuler
theory or when the material properties are uncertain, computing {8} from
Equation (3.11) may not be suitable. The knowledge of modal frequencies
prior to the damage is then necessary. Since w and w, are proportional to
82 and 83, respectively, where w, and B, are the values for the pre-damage

structure, and » and B are the post-damage values, the following relation

holds:
(3.18)

[t 1s assumed in (3.16) that the proportionality constant between W, and

BE does not change after the damage has occurred. The characteristic

equations do not itnvolve any material praperties and B, can be computad from

e i — A s v -
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the characteristic equation for the undamaged structure. With w, and w
measured in the field, {8} can then be computed from Equation (3.16) and the
above procedure can again be employed to determine e and 8. Only the beam
length L, the Poisson's ratio v, and the slenderness ration (b/L) are
required to determine the actual crack location L1 and the crack depth a
(Equation 2.40). Since v is nearly the same for most metals, the theory
becomes independent of the specific material of the structure if the
material is a metal, if the damage is presented in terms of L1 and a, ang if
{8} are computed from Equation (3.16). The theory is totally independent of
the material properties and dimensions if the damage is presented in terms
of e and 8. Thé data are more conveniently presented versus the relative
frequencies (m/wu) or the relative frequency changes (1 - w/mu) rather than
versus the absolute frequencies, whether {8} are computed from Equa-
tion (3.11) or (3.16). In this report, relative changes are chosen as the
means to convey the numerical results.

[n practice, the responses of structures deviate from the Bernoulli-
Euler theory. [t is therefore more accurate to compute {8} ‘rom Equa-
tion (3.16). Equation (3.16), in effect, adjusts the parameters of the
specific structure such that the structure frequencies match those predicted
by the Bernoulli-Euler theory.

In practice, especially for structures whose frequencies are close to
each other, the reduction in a certain frequency due to damage may be small"
while the reduction in the next frequency may drop below that of the former.
This phenomenon is called crossover. When crossover occurs and when one is
not aware that it has occurred, the correspondence established between the
pre-damage and the post-damage values of the frequencies will be in error,
[f, in such a case, one used Equation (3.1%), which involves the ratio of

the pre- and post-damage values of the frequencies, the computed charac-




teristic values will be incorrect. On the other hand, if Equation (3.11),
which involves the structural properties, is used, a knowledge of the pre-
damage frequencies is not required. Hence, it beccmes immaterial which
pre-damage frequency a certain measured post-damage frequency corresponds
to; the important point is that there are some frequency values available
wh' 1 satisfy the post-damage characteristic equation (Equation 3.13). If
the structural properties are uncertain, they can be identified by measuring
one frequency prior to the damage. That is, the constant K in the relation

B. = KJ/w_ can be determined by measuring one w_ and computing the corre-

u u u
sponding 8, from the pre-damage characteristic equation. The same constant
can later be used to compute all the needed post-damage frequencies o by
means of 8 = Xv/u. [n this case, however, the Rj values cannot be used to
present the data, since the ordering of the post-damage frequencies accord-
ing to the magnitudes of their values does not correspond to the pre-damage

ordering, unless the fact that crossover has occurred is known.

3.3. Uncertainties of Closely Packed Multiple Cracks

Under certain conditions, the effect of multiple cracks is not dis-
tinguishable from that of a single crack. In this section, these conditions
are investigated. For this purpose, equivalence of two cracks on a simply-
supported beam to a single crack is first established analytically. Numer-
ical results for larger numbers of cracks are then presented. It is esta-
blished that, when equivalence holds, sclution to the inverse problem of
damage diagnosis cannot differentiate between single and multiple cracks.

Figure l3a depicts a simply-supported beam with a single crack and ips
T-circuit analog. The mesh equation together with the Equations (2.20) and

(2.21) yield

eutfatirhodbusnenanu
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=[Sy + Sy + 208)M - (Sy. +S,.) y/h =0 (3.17)

where M and y are the resisting moment and deflection at the cracked sec-
tion, respectively. The continuity condition V12 = VZI at the crack allows
y to be solved for in terms of M. The characteristic equation for a beam

with a single crack is thus

2

i

vl L

51 Sé) S, + + 2 = ¢ 3.18
TEEN (Sy + 5, + 268) = (3.18)
For the case of two cracks, with reference to Figure I3b, the characteristic

equation is obtained in the form of Equation (3.10) with

Focor_¢o f - -
DU I S TP - {51*52 T2 }
T2 TS Ty Sp*5,
(3.19)
g = S-l+SZ+29-lB - _TZ'
i TZ 52+53+2@28

When it is assumed that the spacing between the cracks is sufficiently

small, that is, e, = LZ/L = ¢; the following approximations are obtained.

Z 3
cosh e,8 = 1 + Lﬁ%l— , sinh e,B = e + 15%1_

(3.20)
2 3
cos e3 s 1 - LB gin e s e - LB
2 2 2 5
[t then follows from Equation (2.18) that
5 ggg ~ EB St o= T ~_Z .
Sp xS, Toe =3, 5 T =5 (3.21)

After (3.21) is substituted into (3.19) and the necessary operations are

performed, the matrix of coefficients in (3.8) s obtained as




2
. . »
d =58y + 5 (5, +5y)(e) + LB
Moy = = (24 S0 Sy) + (50195, + 451 = $,54(S, + 28,8)
117 1530 FL51)753 + 85 = 595505y *+ 28
hy, = = =% (4 + S0 Sy + S.50) = 2(S] + S4)
127 @ Pttty ] ¥ 33
Py = = (2 + $,50) + [S,(S5)2 + 45 = $,54(Sy + 20,8) (3.23
22 % %8 e 1053 3 " 3053 7 29, (3.23)
L] , !
1 l - I
5 - |
Su L 2. 12 <ile L G L I
Zu ?Zn
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Tigure 13. Simply-sugported bear. 2) Witk a sirgle crack and ils circuit azaleg.

b) Analog circuit for a simply-supperted beam witk &vo cracis.




The above analysis is valid at points where S, Sy, S,, Sy ars of smallar
1> 1 23 -3

order of magnitude than l/:3. The characteristic equation for the two crack
case is thus
. 4s, S. .
JTo-1 ) X
det (X773 - ) = —3 {(S1 + 5@
' 2 1 3
(e8)

(3.28)

5y + s3>[s.l Sy r 2y b ez)s] b+ 0(1/¢e8) = 0

For small values of 8y, & comparison of Equations (3.18) and (3.24) reveals
that Sl’ Sl" SZ’ 52' in Equation (3.18) are nearly equal to Sl’ S'l, S3,
8'3, respectively, in Equation (3.24). The difference between the cnarac-
teristic equations for one- and two-crack cases is of the order of the pro-
duct €,8. (The difference is proporticnal to B and is, therefore, larger
for higher modes.! The effective sansitivity number for the two cracks
approximatas, as shown in (3.18) and (3.24), the sum of the individual
sensitivity numbers, that is, 8 = 61 + 82. Thus, closely spaced muitipie
cracks, in geraral, cannot be dif<erentiated from a single equivalent crack.
Numericai data for different crack configurations indicate the same result.
Similar results are present for a clamped-clamped beam. Numerical
results for a cantilever beam indicate that the first few characteristic
values of a beam with closely spacaed multiple cracks are, in general, close
to those of a beam with an equivalent single crack whose sansitivity number,
eeq’ is aporoximately equal to the sum of the individual sensitivity numbers
of the cracks on the original beam. Furthermore, the location of the equi-
valent crack is generally within the region where the group of cracks is
{ocated. In conclusion, equivalence of cldsely spaced cracks 0 a single
crack implies that, in the process of damage diagnosis, it is imcossible to

distinguish between closely spaced multiple cracks and a single crack.

oy
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Figure 14 typically illustrates the Tower 1imit of crack spacing for a
cantilever beam when unifcrmly spaced multiple cracks become, as a whole,
indistinguishable from a single crack. In Figure 3, as in subsequent
illustrations, each crack assumes a sensitivity number 9, of value 0.174
which is taken to be a major crack in a beam of slenderness ratio of 0.05
(correspanding to a relative crack depth y = a/b of 0.6). The equivalence
is based on equal values in the first two moda! frequency changes and a
tolerance of 0.1% in the third mode characteristic values, i.e.,
eq ac P € 0.001, where the subscripts eq and ac denote the

values for the equivalent single crack and the actual damage configuration,
respectively. If the tolerance level in ség) is increased, the curves
in Figure 14 will shift upward. As the number of cracks increasas, they
must be more closely spaced to be representable by a single crack. The
Tower 1imit of spacing depends on where the group of cracks is located. At
the built-in end and at e = 0.6, more widely spaced éracks can baccme
indistinguishable than at e = 0.1. The Tower limit of spacing is dependent
also on 9, values. For example, when ey = 0.1, k = 2 and 61 a 82 = 0.01
(corresponding to vy = 0.2 for b/L = 0.05), the smallest crack spacing for
whicy the double-crack damage becomes indistinguishable from a single-crack
damage is e, = 0.025.

Figure 15 illustrates the relative frequency changes, RJ, for a canti-
Tever beam with two closely-spaced cracks of @ = .174 each. A very similar
set of curves is obtained if {Rj} is plotted for a cantilever with one crack
of eeq = ,348. For any given number of cracks on a cantilever beam, the
largest decrease in the fundamental frequency occurs when all the c¢racks are
groupd at the built-in end. On the other hand, for Seq 2 .3, the greatest
change in the second frequency is observed at a location 4). Such infor-

mation can be utilized to set rough guidelines for damage diagnosis.
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It is clear that probabilistic methods must be resorted to in diacnosis
of multiple cracks when an insufficient number of fregquency measurements are
available. Nevertheless, some gqualitative conclusions may be reached wit
the help of Figure 14 which is independent of material oroperties. In par-
ticular, when a solution has been obtained for a single crack and a decision
has to be made between a single crack and a group cof closely-spaced less
severe cracks, one may argue that formation of a single crack is more
likely. In other words, a small mode I type crack is likely to propagate
under bending rather than other cracks forming nearby. On the other hand,
one severe and several minor cracks may exist distributed along a structure
in which case the objective is to be able to diagﬁose the major crack.
Guidelines may be established qualitatively based on the frequency chanace
curves for a cantilever beam, Figure 15, in which case we mav proposa that

a. If R1 is consjderab]y smaller than R2 and/or R3. then the (major
crack(s)) is at a normalized distance greater than ~0.45 from the built-in
eng (Fig. 15). In addition, (i.) ivaz is considerably larger than R3. the
crack is located around 0.45-0.65 relative to the built-in end (see
Section 6.0 below); (ii.) if R3 is larger than RZ’ the crack is at a dis-
tance greater than ~0.7 or; (iii.) if R2 and R3 are comparabie, then there
may be one major crack at 0.65-0.70, or two major cracks one each in the
peak regicns of the R2 anag R3 curves,

b. If R2 is significantly smaller than both R1 and R3. the crack is in
the region 0.2-0.3, or there may be a (major) crack at 0.2-0.3 and anather
(major) one at a distance greater than 0.8, the latter being more likely if
R3 is greater than Rl'

c. If Rl is significantly larger than both R2 and R3. and R2 and R,

are rather small, the crack is at 0.1-0.2.
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d. If the values of Rl’ R2 and R3 are comparabie, several possibil-
ities exist. To Tist a few, there may be a number of cracks distributed
over the beam (Section 3.5 below); the crack may be at 0.35-0.40; or there
may be a crack at 0.0-0.3 and a few others at locations greater than ~0.5.

In the present study, only the first three natural frequencies are
assumed measurable. The peak locations of RZ and R.3 curves in Figure 15 are
weak functions of 8 increases. For example, as 8 is increased frem 0.01 to
0.50 (effective value for a few closely spaced cracks), the peak of the R2
curve shifts from the location 0.530 to 0.563 while the second peak of the
Q3 curve shifts from 0.710 to 0.760. Similar guidelires for different
structures can be established based cn minimum and maximum frequency changes

although the procedure may beccme tedious for more complicated structures.

3.4. Uncertainty From lnadequate Measurements

To illustrate the uncertainties involved in damage diagnosis when the
three Rj values are comparable in va1ue,.the following relative frequency
changes are assumed to have been computed fram the measured frequencies of a
cantilever beam: Rl = 0879, R2 = .0586, R3 = ,0591. It is to be determined
whether the damage mainly consists of one major crack.

The (actual) characteristic values are computed from

ac J)
where {B(J)} are the undamaged characteristic values, the first three of
which for a cantilever are (1.8751, 4.6941, and 7.8543). From (22), in
particular, ng) = 7.6192. The first two actua) characteristic values

q° 372 with eeq = .128
(corresponding to a relative crack depth of y = .55 for a slenderness ratio

yield one solution for a single crack located at ey

of b/L = .05). These equivalent values are then used in the forward problem
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with k = 1 egs. 3.6, 9, 10 (10, 11, 14, 16) to determine the third charac-
teristic value due to the equiva&ent crack. The computation thus yields
Béj) = 7.6176. Then, Bgf) - Bés) = .0016. If we assume that the
accuracy in ng) is not better than :£.0016, the equivalent single crack .
solution may be accepted as the true damage diagnosis. On the other hand,
the given Rj data were actually generated in a forward problem with ten
cracks of equal intensity (@ was taken to be .01 [i.e., vy = .2] for all the
cracks) located such that g = .001, ey = .0%4 for i = 2,3,...,10. Thus, in
this case, even though the actual and equivalent 8(3) values match closely,
a firm diagnosis cannot be reached.
3.5. Effect of Minor Cracks Associated with a Major Crack.

For the purpose of illustrating the effact, it is sufficient to use the
forward problem formulation in which the locations and intensities of the
cracks are known. The characteristic values B(j) are determined from

Equation (3.10). The relative frequency changes are then determinad from

the characteristic values, namely,

Y 5 1501 2 3.25
T BN (3-23)
u .

a. First the analysis will start with one crack (Fig. 16a), i.e.,

K 1, at e = .54 (in the peak region of the R2 curve, Figure 15) with

8 = .174 (y = .6). The relative frequency changes are then computed as

R1 = ,029, R .137, R .014,

2 © 3°
b. Now, in addition to the crack in part (a), there are five more

cracks of intensity e = .0026 (y = .1) each, distributed on the cantilever
such the &) T e, T ey T e = .1, &, = .24, and ey = .09 (Fig. 16b). The

actual characteristic values are computed as 3(1) = 1.840, 8(2) = 4,351, and
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Figure 16. Cantilever with one and six cracks.
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a(3) = 7,768 from wnich Ry = .037, Ry = .141, Ry = .022. If these values of

R, were obtained from actual measured frequencis from which the damage were

3
{1) (2)

to be diagnosed (the inverse problem), 8 and 8 are used to find a

solution for a single crack, which is (e__. 8q! = (.51 .183). This single

eg g
crack would produce Bég) = 7.845 or R3eq = .0024.

¢. The same case as in (b) except o, are changed to .01 (y = .2) with
the major crack remaining the same, i.e., 8, = .174. Hence, the depths of
the minor cracks are doubled. The corresponding frequency changes in the
forward problem are R1 = .058, R2‘= .151, R3 = .043. If the same R1 and R2
are in turn used in the inverse problem of damage diagnosis with k = 1, we
dTatn (e, 8,0) = (47, .224). eég) = 7.830, Ryy, = 0064,

The above cases indicate that the value of R2 did not change signifi-
cantiy wnen minor cracks were added to the beam. If this were an actual
damage diagnosis problem, in which case on1y {a(j)} and {Rj} would be Kknown
from the measured data, then a decision would have to be made about the
eq’ eea)'

(ch. R3 = .043, but R3eq

with the actual values of R3, the solutions for (eeq’ eeq)

computed (e In case (b), R3 = ,022 whereas R3eq = ,0024. In cas

= ,0064. Hence, based oniyv on comparison of R3ea
would be re-
jected. Nevertheless, the eguivalent damage parameters in both cases
closely identify the major crack located at the distance of .54 from the
built-in end with 8 = .174. When there is no minor crack on the beam. as in
case (a), (eeq. eeq) would be computed as (.54, .174). Tne effect of the
minor cracks an (eeq' eeq) is thus seen to be small. Hence, it is concluded
that, when the given Rj values exhibit a pattern such as in this example,
the discrepancy in R3 and R3eq or in 843) and Bég) can be ignc ed

when the tnterest is in diagnosing the major crack.




3.6. Peak Modal Response
[t is to be demonstrated that, when multiple cracks exist on a beam, a
crack which is located in the peak region of an Rj curve affects the corre-

sponiding frequency, w;, the most.

j?

a. BHiven k =1, e = 0.001, 91 = (.174. The frequency changes are
computed as (the forward problem) Rl = 0.234, RZ = 0.162, R3 = 0.125.

b. A second crack is added to case (a) such that e, = 0.546 (i.e.,
near the peak region of the R2 curve of a single crack as in Figure 15) and
8, = 0.174. Then R1'= 0.246, R, = 0.272, Ry = 0.162.

c. A third crack is added to case (b) such that ey = 0.185 (i.e., near
a peak region of the R3 curve of the single crack in Fig. 15) and 93 =0.174
[parameter values in cases (a-b) are preserved]. Then R1 = 0.247,
RZ = (.273, R3 = 0.167. In case (b), the greatest decrease relative to case
(a) occurred in the second frequency, whereas in case (c) it was the third
frequency that suffered the largest decrease relative to case (b) although
this decrease was insignificant for 93 = 0.0l. The exampTe iTlustrates the
effect of crack Tocation and intensity on the frequencies and confirms the
usefulness of curves such as Figure 15 to diagnasis of damage as outlined in
the guidelines presented earlier.

[t should be noted that the sensitivity number 8 is a measure of how
sensitive the natural frequencies are to given crack depth and Tocatfon as a
function of the slenderness ratio. 0Oecrease in natural freguencies is
greater for larger values of 8. Between two cracked beams with the same
crack location and relative crack depth, 6 for the more slender one will be
smaller giving rise to smaller RJ values. Far example, for y = 0.6, (and

v = 0.3), 8 = 0.0697 when b/L = 0.02 and & = 0.0174 when b/L = 0.005. Thus,

in practice it is relatively harder to diagnose damage in slender beams. On

————— i A — -



the other hand, two beams of the same slencerness ratio and Poisson's ratio,
but of different materials, experience the same relative decrease in fre-

juencies for the same crack location and relative depth.
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CHAPTER 4
"TRANSMISSIBILITY THEORY OF DAMAGE DIAGNOSIS

In this chapter, a new method is proposed for diagnosing damage in
large structures. The method utilizes the changes in transmissibilities at
several Tocations, called the response stations, on the structure. The
method is developed by computing the transmissibiiity changes for known
crack configurations and comparing the magnitudes of the changes at differ-
ent response stations. The equations derived in Chapter 2 through the

electrical analogy of a damped frame structure are used in the computations.

4.1. Transmissibility and Relative Transmissibility Change

In this study, transmissibility is defined as the magnitude of the
ratio of acceleration at a response station to the force appiied at an arbi-
trary locaticn on the structure (Fig. [7). Namely,

Yy
T F_E’ (4.1)

where Yi is the complex deflection at the response station of interest.

Jwt

When the force is sinusoidal, that is, F=Fme , the defiection becaomes

_odet - Ji[wt-
Yy Tye T Ty [ut-o] (4.2)

where y is the complex modal shape, Ym is the ampliitude of transverse de-
flection, and ¢ s the phase angle. Ym and ¢ are functions of Tocation and
excitation frequency. o is zero for an undamped structure. Transmissi-

bility for sinusoidal excitation is then given by
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Figure17. A tbree-story four-span fame.
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I= (4.3)

The amplitude of deflection, ym, at the response station can be computed from
Equation (2.63) for any plane frame with and without a crack, when tke crack location
and the sensitivity number, O, are known. In praciice, transmissibilities can be
measured periodically or after a strong motion event and cemparad {0 baseline
values to diagnese the damage. To facilitate a diagnosis methcd, the relative

transmissibility change is introduced as follows:

_T.~-T, T,
Rr-_T;—-T.— 1 (4.-.4)

where the subscripts ¢ and o indicate the transmissibilities witk and without the
crack, respectively. Whea the structure is excited at the same frequency ard with

the same force magnitude before and asr the darzage, Ry teccmes




Y,
Rr= _f."'_._l (4.5)
Ym,

An undamped structure pas node points, that is, points with zero transverse

deflecticn at all times. I for such a structure, the response station is at a node point

of the undamaged modal shape, then ym, =0. If. on the other hand, it is at a node

point of the post-damage modal shape, then ¥y, = 0. In general, then,
-1<Rr<e== : {4.6)

Damped structures, in general, do not have {rue node points. Zvery point on tkhe
struct'ure deflects somewhat during a period of the excitation. Ay, however, still has
minimum 2nd maximum velues with respect to the location of the :esponée station.
To facilitate referral %o such locaticns, the following definition is introduced. A
pseudo-node soint, PNP, of a damped structurs is a point with lecally minimum
amiplitude of transverse deflection. Thus, Ay is maximum at the PNPs of tze
undamaged structure and minimum at those of the damaged structure.

Relative trensmissibility change is a function of the excitation location and
frequency, the localion of the response station, and the crack location and severity,
as well as the siruciural parameters. [t is desirable to have large values of relative
transmissibility changes for as small cracks as possible. This may te acsomplished by

optimizing the parameters wkich can be controlled.

4.2, Optimum Parameter Values

It is found that exciting a frame structure cn a cclumn rather than cn a gizder is
more adventageous for diagnesis purposes. A 3x4 structure (Le., n=3, m=4) is
shown in Figure 17. The frames studied throughout this chapter are uniform unless
stated otherwise; namely, all of the beam elements which make up the frames are of
equal lepgth and have the same material and geometric properties. Figure 18
illustrates the variation cf the relative iransmissibility change at a response station
2s a function of the excitation location which is varied along the leftmost wall cf the

frame. Each third of the abscissa corresponds to ore of the columps cn that wall, with
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N=3, M=4, CRACK ON 17 AT .1, TRETA=.024, EXC. ON WALL 1
RESPONSE STATION ON 16 AT .51, UNDAMFPED BETA=.S6

.
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RELATIVE TRANSMISSIBILITY CHANGE
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Figure 18.Relative transmissibility change vs excitation locaticn.

distance measured from the anchor up. The response staticn is on girder 16 at =

3

rmalized distance of (.51 measured Srom tne left end. The crack is cn girder 17 at
a distance of 0.1 from the left end of that girder. Sensitivity number, @, for the crack
is 0.024 (Eq. 2.40). Damping factors, &, (Eq. 2.2) for the structure is taken to be 0.0
The undamped £ vaiue, 84, whick is a function of the excitation frequeacy (Zg. 2.8), is
0.26, nearly the sarme as tke first undamped characteristic value of the siructurs.

The figure indicates that tze relative transmissibiiity change {c

2]
W
oq
P
0
vy
o

)
n
n

largest waen the excitation is applied gear a rame joint.

Figure 19 illusirates the dependence of the relative transmissibiiity change, Ay,
on the excitation frequency expressed in terms of the undamped § wvalue. Cther
variables have the values given above with the excitation applied on column 2 at a
distance of 0.95 from the ground. Rr is seen to have peaks near the natural mcedal

Irequencies of the structures. Thus, it is concluded that structures should he tested

=ear resonance.
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N=3, M=4; TRANSMISSI2ILITY STATION ON 16 AT .61
EXCIT. ON 1 AT .95; CRACK ON 7 AT .1 WITH THETA=.024

4.3

pey -
284

14

RELANIVE TRANSMISSIBILITY CHANGE

Figurel9. Relative transmissibility change vs {requency.

The amglitudes of dimensicnless transverse deflections ,|y |, 2long girder 18
with and witheut a crack on girder 17 are shown in Figure 20, where dimensioniess

defiection for the uniform frarme is defined by

. EIS
LF,

with ¥ given by Equation (2.63). A computer program is writtien io compute the

Lou?
d &7
8 ¥ .7)

Y

dimensionless deflections on 2 frame with uniform material properiies, but difsreat

beam lengiks in general. The listing cf the program is given in Appendix

For an undampen (i.e., §=0) siructize, the curves in Figure 20 would be cziled
modal shapes. The pseudo-node point, PNP, of the girder is observed to have shifted
after the damage. The curves in Figure 20 also represent the transmissibilitiss (Eq.
4.3) with and without the crack as a function of the locaticn of the response staticn cn
girder 18. These two curves yield the Ry curve in Figure2l which indicates that Rr
takes its muinimumn and maximum values at the BNPs of the post-damage and pre-

damage structure, rescectively. Figure 22 shows the variation of Ky as a function of
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N=3, M=4; £XC. ON T; CRACK ON 17 AT .1, THETA=.024
AMPUTUDE OF TRANSVERSE DEFLECTIONS ON 16; 3ETA=.S6
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Figure20. Transverse deflections on girder 16,

N=23 M=4, DICTATION ON 1 AT 0.95, UNDAMFID BITA = 86
CRACK ON 17 AT 0. WITH THETA = 0.024
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Figure 21, Relative transmissibility change vs respense location.

the locaticn of the response staticn or 15 when there is a crack cz colume 4.
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N=3, M=4, EXCITATION ON 1 AT 0.S5,UNDAMFSD EETA=0.56
CRACK ON 4 AT 0.7 WITH THETA=0.024
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J Figure 22.Relative transmissibility change vs respense lecation.

N=3, M=4, £XC. CN 1 AT 0.9S5, UNDAMFD 227A=0.56
CRACK ON 17 AT Q.1 WIH THETA=0.024
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Figure 23, Relativ transmissibility change vs response leccaticn.
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At lower natural frequencies, the columns of the structure do not have pseudo-
ncde points. Figure 23 shows that, at the fundamental frequency (i.e., §4=0.66), Ry
remains nearly constant wken the location of the response station is veried alecng the

column 4.

In surnmaeary, then, Ry can be maximized when the excitation is o.n a column near
a joint and at a resonant frequency and when the response station(s) is(are) near the
PNP(s) of a girder(s).

Table 1 lists the PNP locations at the fundamental frequency, on some of the
girders of the frame in Figure 17 In the table, {, denotes the excitation locaticn on
the respective column. All of the distances are normalized and measured relative to
the lower (left) end of the respective column (girder). As the table indicates, a PNP
location is highly insensitive to the excitation location and to the value of the damping

factor.

4.3, The Number of Respcn:se Stations

 is desirable, from a practical point of view, to accomglish damage diagnesis
with a minimum number of transducers. This number is related to the objectives of 2
diagncsis process. In theory, a transducer may be installed on every girder and the
crack can be isclated to within a beam element. In the light of the high sensitivity of
the'transmissibﬂity changes to the response location in the vic'i.nity of the PNPs and
the uncertainties involved in practice, however, the cbjective in this study is to isolate
a crack to within one or iwo cells of a frame structure. A local method, such as an
ultrasonic techmiqi:e. may then be utilized to determine the exact location of the
crack. With this objective in mind, the six response staticns on the frame of Figure 17
were chosen. These stations are on girders 16, 19, 21, 22, 24, and 27. Numerical
results indicate that, in gereral, response at a measuring station is most significantly
afected when the crack is at a frame cell neighboring the staticn. In Figure 17
station 26, for example, has four neighboring cells while station 21 has six The

criterion used here for selecting the stations is that each station has at rmost two
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neighborizg cells in common with those of another station. This implies that every
other girder on a floor level has a station on it and that every other girder is skipped

as one moves vertically up the frame. The number of transducers (resporse stations)

required is, then, —— when nm is even and l—-z-—- when nm is odd, where n is the

2

.number of stories and m is the number of spans. The selection of stations in Figure 17
violates the above criterion, even though the number of staticns is still six. Most of
the murmerical computations were carried out with the configuration of Figure 17

therefore, the development of the method is based on that configuration.

TABLE 1
PNPs of Some Girders (No crack)
B84 = .96; £, = .95 unless noted otherwise
" Girder 18
é Columnn with the excitation
T | 7 |11(4=55] I
.01 || .6062 | .6084 |  .6084 .6083
.80 || .5994 ] .6079
.30* || .53932 .8018
Girder 24
) Column with tke excitation
T [ 3 & [ 77
o1 | .6183 | 51401 8249 | .smi.
Other Girders(excitation on 7)
é Girder No.
19 | et | 2 | &
.01 | .3918 | 48s5 | .5105 | .3813

* (With a crack of ©=.024 on girder 17 at a distance of .1) -
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4.4. Selection of the Column {or Excitation

Figures 24-27 show the relative transmissibility change curves resulting from
four diferent excitation locations when the other parameter values are kept the
same. Transmissibility change at staticn 27 for a crack on girder 17 is small in all the
cases; therefore, l.:he corresponding cuwé is omitted. The figures indicate that the
tren& of Rr values, for the given response stations, are highly insensitive to the
excitation location. A irend of relative transmissibility changes is aeﬁned as the
order, with respect to the magnitudes, of the relative transmissibiiity changes lor a
given crack configuration. Tke word "trend”, however, will be used in 2 more
qualitative manner rather than with an implication of 2 precise ordering of. numbers.
For a crack cn a certain beam element, for instance, two reéponse staticns may
exhibit the largest ‘ransmissibility changes witbout one response clearly

overwhelming the other, in which case the trend will be descriced as such. From

Figures 28-31, then, the trend of Ry values for a crack on girder 17 is such thal

N=3, M=4, CRACK ON 17, THETA=.024, EXC. ON 1 AT .85, BETA=.26
X16 = 618, X21= .475, X22 = .525, X24 = .648, X27 = .351

L30+
L7
1.04 4

Q.91+

RELATIVE TRANSMISSIBILITY CHARGE

413 v r . - r - . T =24
° ) 2 .43 VIV os a a8 o3 LRl
CRACK LOCATICN <

Tigure 24. Relative transmissibility change vs crack location(excitation ea 1).

-
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N=3, M=4, CRACK ON 17, THETA=.024, EXC. ON 3 AT .95, BETA=.96
X16 = 818, X21=.475, X22 =.325, X24 = .648, X27 = .331

RELATVE TRANSMISSIBWLITY CHANGE

-4.13 - — T Y T T Lo T
° (X 02 a3 04 o3 s 9.7 as as
CRACK LOCATICN

Figure 25. Relative transmissibility change vs crack location(excitatior oa 3).

N=3, M=4, CRACK ON 17, THETA=.024, EXC. ON 7 AT .85, BETA=.96
X186 = .818, X21=.475, X22 = 525, X24 = 843, X27 = .331

RELATIVE TRAMSMISSIBILITY CHANGE

/
v"
¢ o 02 o3 o as o
CRACX LCCATION

Figure 26.Relative transmissibility change vs crack location(excitatisn on 7).
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N=3, M=4, CRACK ON 17, THETA=.024, EXC. ON 13 AT .95, BETA=.95 .’
X16 = .518, X21= .475, X22 = .525, X24 = .648, X27 = .351

RCLATIVE TRAHSMISSIBILITY CHANGE

v r r r— T T e v Te2e
-] [ 8] 02 [ B o4 [ K] - N9 ey o.8 [ X ] 1
T2
—
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Figure 27, Relative trarsmissibility change vs crack location(excitation on 13).

station 16 displeys 2 much more signifcant transmissibility chenge than the other
stations cver a large pcrtion of the range of the crack location. Eowsver, when the
response stations are very close to the PNPs, unlike in the figures, the trends may be
more sensitive to the excitation location. It should be =zoted that relative
transmissibility changes and transmissibilities themselves change as the excitaticn
loc;..tion is veried. The interest of this study, however, is in the trends rather thar the
absolute values. In what follows, the general trends of Ry values will be studied by
exziting the structure on column 7 at a distance of 0.95 frem the ground and by

studying only the left half of the frame and utilizing the symmetry.

4.5. Selection of Response Locations Relative to the PNPs

Figures 21 and 22 demonstrate that relative transmissibility changes are highly
sensitive to the response location in the vicinity of the PNPs. In practice, however, it
Pl

may nct be pessible to determine the exact location of 2 PNF. On the other hard, it

may not be desirable to install a transducer at 2 PNP either since the acceleration or
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deflection theres may be too small to be measurable. Transducers then must be
installed’ at some distance from the PNPs and yet must be close enough to the PNPs
to yield large Ry values. Ior some crack configurations, installing the transducers to
the right of the pre-damage PNP yields betier results (Fig.21) , whereas for others
installing them to the left is better (Fig. 22). This is due to the fact that ?NPS may .
shift to the right or left after the damage. The situation may b;-. improved by
installing two transducers in the vicinity of 2 PNP in cicse proximity to each other.
Such 2 measure is likely to inerease the probability of obtaining a large Ry value for a

given crack.

4.5.1. The Amount of Shift of the Response Stations Relative to the PNPs .

Table 2 lists the amplitudes of dimensionless deflections of selected girders on
the unda:nageé frame in the vicinity of PNPs as well as the lateral defections of the
foor levels for the frame of Figure 17 witk the excitation on column 7. The undamped )
g value, &y, is 0.98 (Le., 2t the fundarmental frequency). The amplitude of complex ]

deflection can be shown to ke

2
fy°l = éf}’ (1 + 658 |y (4.8)
m

from Eguations (4.7) and (2.5), where |y| is the physical deflection. An empirical

formula for the fundamental frequency of multistory buildings is »; = %F—-m rad/s

{33] which is the Uniform Building Code formulz, where n is the number of steries. For
a three story building, then, &, ® 21 rad/s. I it is-assumed that the ampiituds of the
force, 7, is approximately equal to the weight, Leg, of one beam siement, where 5 is
the gravitational constant, equation (4.8) can be written as

ly*l=12lyl . |yl in inches. (4.9)
? Eddy-current displacement iransducers are capable of measuring deflections less

than 1072 inch (0.025 mm). If this value is accepted as the base, |y *| must be of the
order 1073 in order for |y | to be measurable. From Table 4, then, the locations of the

response stations are determined to e at the points away from the PNPs, where |y |

“—-—_—4
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TABLE 2
Deflections at Selected Locations
Excitation on colurmn 7 at .85

Bs =.98, d=.01

Sidesway of the Floors

Floor ” ly " j
1 0.438
2 0.609
3 1.157
|

at the excitation | 0.422

In the vicinity of the ¢'rder PNPs

Girder | Location ] ly " x10°
.588 3.04
.598 - 1.53
16 (| .6084(PNF) 0.008
518 1.40
| .e28 2.83
| s 1.32
21 | .4B95(PNP) | 0.014
| -508 1.41
.589 1.14
24 .6187(PNP) | 0.003
.643 1.09

reaches a value of at least 1073, This translates into a shift, away from the respective
PNP, cf 0.01 for girders 18 and 12, 0.015 for 21 and 22, and 0.03 for 24 and 27. The
response locations used in Figures 24-27 were based on these shift velues. As the
response stations are moved further away from the PNPs, Ry values get smaller and
become comparable in value as a result of whick the trends are gradually lost. For
gxample, when the  locations of the response stations are
¢16 = 0.85, &9 =0.15, §2; = 0.20, £z = 0.80, €2, =0.85, and £z =0.15, all of which
are measured f{rom the left ernd of the respective girder, all of the relative

‘t.ransmissibility ckanges for a given crack are either small (less than 10%) or close in
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N=3, M=4, CRACK ON 17, THETA=.024, EXC. ON 7 AT .85, BETA=S6
X16=.658, X21=.475, X22=.525, X24=.649, XZ7=.35!

RELATWVE TRAHSMISSIBILITY CHANGE

3 o a2 o3 o4 as o X} a3 os 1
CRACXK LOCATION

Figure28. Relative transmissibility change vs crack location.

value. On the other hand, moving the respense staticns closer to the PNPs increases

the possibility of diagnosis as tke trends become more definitive.

-

1t is desirable to know hew far away rom the PNPs the trends still persist. Figure
28 illustrates that at a distance of 0.05 from the PNP of girder 16, the iread for a

crazk on girder 17 is still clear, when the crack is on the left half of the frame and

when the other response stations are kept at the same locations as in Figures 24-27.

Further away from the PNP, however, tte trend starts becoming less clear-cut.

4.5.2. The Direction of Shift of the Response Stations Relative to the PNPs

Another question related to the optimum location of the response staticns

relative to the PNPs is that of whichk direction to shift the response stations. Tables 3
r

and ‘4 list the relative transmissibility changes at the six response stations as a2

functicn of the crack location. In Table 3, the resporse stations cn girders 16 and 18

are shifted from the corresponding PNPs by a distance of 0.01 away from the center, -

while those on 21 and 22 are shifted by a- distance of 0.015 toward the cecter and the
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TABLE 3
Relative Transmissibility Ctanges vs Crack Location
Excitation on column 7 at a distance of .95, f4 =.S6, § = .01, @ =.024.
Response Locations :
&9 = .598 £2; = .5CS £24 = .589
g9 = .402 §23 = .495 fp = 411
(¢. = crack locatior, RS : response station)
1) Crack on column 1

¢ RS 16 RS 19 RS 21 ‘RS 22 RS 24 RS 27
0.001| {-0.440 0.239 0.257 0.224 0.179 .0.235
0.100 -0.221 0.183 0.171 0.153 C.128 0.160 -
0.2C0 -0.067 0.103 4.104 0.0986 0.087 “0.101 -
0.300 0.027 Q.088 0.038 0.054 0.054 0.057
0.400 0.071 0.028 0.023 0.c25 0.030 0.028
0.500 0.067 0.008 0.0C4 0.007 0.013 0.008
C.800 0.013 0.0C0 -0.001 C.000 Q.002 0.000
0.700 -0.078 0.003 0.007 0.0C3 -0.003 0.003
0.2C0 -0.214 0.0186 0.028 0.016 -0.0C2 0.017
C.9C0 -0.400 0.040 0.081 0.040 0.005 0.041
0.85¢ -0.633 0.074 C.107 C.073 Q.017 0.0786

2) Crack on coiumn 2

ée _ES 18 RS 19 RS 21 RS 22 RS 24 RS 27
0.001 0. 404 0.043 0.028 C.048 0.038
Q.1C0 -0.301 0.024 0.021 0.029 g.022
0.200 -0.177 0.011 0.015 0.015 0.010
0.300 -0.081 0.003 0.008 0.005 0.003
0.400 -0.013 0.000 0.002 0.000 - 0.000
0.500 0.029 C.002 -0.005 0.000 0.001
0.800 0.046 0.007 -0.012 0.004 0.005
0.700 0.037 0.017 -0.019 0.011 0.012-
0.800 0.004 0.030 -0.027 0.021 0.022
0.200 -0.082 0.045 -0.038 0.035 0 0358
0.999 -0.132 0.064 -0.045 0.0580 0.049

IO T Al
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TABLE 3
(continued)

3) Crack on column 4

3 RS16 -| RS19 | RS21 | RS22 | RSae RS 27
e

0.001 . 0.348 0.172 0.289 0.370 0.328
0.100 0.221 0.123 0.175 0.231 0.209
0.200 . 0.128 0.083 0.105 0.131 0.121
0.300 . 0.083 0.052 0.0586 0.062 0.060
0.40C -0.018 0.022 0.028 0.023 0.020 0.022
0.500 -0.035 0.003 0.009 0.005 0.001 Q.002
0.8C0 0.039 0.002 -0.008 -0.000 0.0C3 0.0c2
0.7C0 0.207 0.c20 -0.014 0.0C7 0.027 0.018
0.800 0.475 0.058 -0.018 0.028 0.072 g.0s2
0.8C0 0.858 0.117 -0.021 0.083 0.141 0.108
0.899 1.372 0.200 -0.020 0.113 0.238 - 0.181

4) Crack on column 3
¢ RS16 | RS19 | Rset RS 22 RS2¢ | RSZ7
0.001 1.205 0.171 0.560 0.2C5 0.C15 0.133
0.100 0.773 0.103 0.287 0.113 0.C25 0.C80
0.200 0.430 0.054 Q.10%7 0.0E3 0.028 0.043
0.3C0 0.2:9 g.c22 0.008 0.015 0.022 0.018
0.400 0.0687 0.004 -0.021 -0.001 0.011 0.004
0.500 -0.018 0.0Q0 0.017 0.003 -0.005 -0.000
0.500 -0.034 0.008 0.118 0.028 -0.028 0.0CS
C.700 0.012 0.029 0.285 0.087 -0.088 0.015
0.800 0.124 0.081 0.521 0.128 -0.087 0.042
£.800 0.308 0.107 0.835 0.210 -0.148 0.074
0.9S9 0.883 0.185 1.231 0.315 -0.207 0.113

5) Crack on girder 18
¢ RS 16 RS12 | Rsa1 RS2z | RS2t | RSZ7
0.001 0,088 0.259 0.28% 0.283 0.546 } 0.235
0.100 -0.887 0.170 0.174 0.174 0.223 0.182
0.200 -0.017 0.098 0.087 | 0.0¢6 Q.13 c.Ccs2
0.300 0.470 0.048 0.022 0.043 0.069 0.C44
0.400 0.334 0.018 c.002 0.012 0.027 0.018
0.500 0.211 0.002 -0.004 -0.000 0.004 0.001
0.600 -0.483 0.002 0.013 0.008 -0.001 0.003
0.7C0 -0.851 0.018 0.054 0.030 0.011 0.020
0.800 -0.080 0.051 0.118 0.073 0.041 0.C83
0.SQ0 1.368 0.102 0.214 0.139 0.082 0.1C58
0.88% 3.828 0.174 0.344 0.232 | 0.187 0.177

> | IV a
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TAELE 3
(continued)
8) Crack on girder 17
& RS 18 RS 19 RS21 |. RS22 RS 24 RS27 |
0.001 -0.841 Q.1380 0.215 0.028 | 0.0858 0.133
0.100 -Q.368|" 0.112 0.148 0.068 0.030 0.083
0.200 -0.354 © 0.058 0.081 0.043 0.028 0.045
0.300 -0.1390 0.018 0.049 0.025 0.008 0.018
0.400 -0.073 0.001 0.019 0.010 0.C0¢ 0.004
0.500 C.203 0.0C0 -0.001 -0.000 Q.CCo 0.000
Q.800 0.038 0.017 <.010 -0.007 0.0C8 C.007
0.700 0.032 0.052 -0.008 -0.010 0.025 0.028
0.800 -0.015 0.107 0.005 -3.009 C.C30 0.056
0.500 -0.108 0.182 0.028 -0.004 0.084 0.0¢8
0.29%9 |-0.252| 0.280 0.065 0.004 0.129 - 0.183

cnes on 24 and 27 by a distance cf 0.03 away from the center. In Table 4, the shifis
are in the oppesite directions by the same amounts. Table 3 shows ocly the cases
when the crack is on a beam =lement in the neighberhocd of response staticn 28§, that
is, on 1, 2, 4, 5, 15, cr 17. A negative {ransmissibility change which is large in
magnitude is considered significant. From Table 3, tzen, the changes at station 15
are the most significant ameng all the stations, wten the crack is on an elerment
neighbering station 18. It is preferable, however, o chcese a respomse station at a
location where tranmsmissibility (or deflection) increases afier the damags, which
increases the measurability of post-damage deflactions. When Table 3 is compared
with the ccrresgonding segments of Table 4, it is observed that it is more
advantageous Lo shill response station 18 to the right for a crack on elements I, 2, 15,
and 17, and to lefl {or a crack cn + and 3. Figure 2C clezriy Mustirates the case Ior
2 crack on girder 17, In the aralysis which follows, respense station is takesn i be

located to the right of the respective PNP since this (s more advantagecus for more

elements. As menticned eariier, if one transdurer is mounted cn eacz side of a PN7,
the prospects of diagr.csis are signifeantly imgproved. Similer cosmputalizcns and

comparisens were carried cut for crack locations ¢n other beam elemenis. Tae

results are sw=marized in Table 5 which shows the preferred directicns of shift
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TABLE 4
Relative Transmissibility Changes vs Crack Lecaticn
Excitation on column 7 at a distance of .95, g4 =.96, ¢ =.01, 6 =.024.
| Respense Locations :
¢1a = .618 £y = .475 24 = .849
é1g =.382 $op = .525 ¢z =.351
(¢ = crack locatinn, RS: response station)
1) Crack on column 1
¢ RS 16 RS 18 RS21 . RS22 RS 24 RS 27
0.C01 0.921 0.220 0.196 0.233 0.277 0.225
0.100 0.546 0.150 0.139 0.160 0.183 0.15¢
10.200 0.272 0.085 0.093 p.102 0.111 0.0e8
1 0.200 0.087 0.054 0.057 0.059 0.059 0.038
0.4C0 -0.019 £.025 0.031 0.028 0.023 0.027
0.500 -0.033 0.Co8 0.012 0.008 0.004 0.008
0.£00 -0.018 0.000 0.001 0.c01 -0.001 0.CCo
0.7C0 0.054 0.003 <0.002 0.002 0.008 0.002
0.200 0.233 0.015 C.001 0.014 0.022 0.014
0.8C0 0.491 0.037 0.011 0.035 0.089 0.G26
0.s89 0.801 0.068 0.027 0.066 0.121 0.087
2) Crack on column 2
¢ RS 18 RS 19 =S 21 RS 22 RS 24 RS 27 |
|
0.001 . 0.0S1 0.074 0.051 -0.015 0.0835
0.100 . 0.030 0.037 0.028 -0.0C0 0.0232
0.200 . 0.014 0.013 0.013 0.008 0.015
0.3C0 . 0.00s8 0.000 0.003 0.ce8 0.005
0.400 . 0.000 -0.001 -0.000 0.002 0.000
0.800 -0.023 0.001 . 0.co8 0.0c2 -0.010 0.001
0.600 -0.034 0.006 0.027 0.010 -0.029 0.007
0.700 ~0.0C8 0.018 0.088 0.022 -0.054 0.017
0.800 0.054 0.C29 0.093 0.038 -0.086 0.031
0.800 0.148 0.048 C.138 0.088 -0.125 0.048
0.589 0.288 Q.085 0.181 g.082 -0.188 0.071
_ —h ——— R
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TABLE 4
(continued)
3) Crack on column 3
[ RS 15 RS 18 RS21 " RS22 ES 24 RS 27
0.001 -0.031 0.007 0.043 0.012 0.0c8
0.100 -0.019 0.003 0.024 0.008 g.0c2
0.200 -0.008 0.c01 0.010 0.002 0.0C0
0.300 0.000 0.000 -0.000 -0.000 0.000
0.400 0.008 0.001 -0.008 -0.0C0 Q.001
0.50Q 0.011 0.002 -0.008 0.001 0.Cc03
0.600 0.013 0.005 -0.007 0.003 0.008
Q.700 0.013 0.c08 -0.004 0.0038 0.010
0.800 0.011 0.011 0.001 0.008 0.013
0.800 0.008 0.014 0.008 0.012 0.018
0.989 0.003 0.017 0.016 0.015 . 0.019
4) Crack on column 4
¢ RS 16 RS1s | RS21 | PRS2z RS 24 RS 27
0.001 -0.853{. 0.285 0.477 0.387 0.2687 0.308
C.100 -0.321 0.184 0.280 10.231 "0.176 Q.1¢8
0.200 -0.104 g.1C9 0.157 0.132 0.107 0.118 |
0.3c0 0.020 0.057 0.068 0.084 0.088 0.055 !
0.400 0.C67 0.022 0.017 g.022 0.025 0.023 |
0.200 0.046 0.0C4 -Q.003 0.002 0.00% 0.C04
0.800 -0.041 0.000 0.007 0.003 -0.001 0.001
0.700 -0.194 0.011 0.C48 0.024 0.CCS 0.014
0.800 -0.422 0.038 0.120 0.0886 0.023 0.043
0.900 -0.738 0.077 0.227 0.132 0.054 0.080
0.929 -0,846 0.135 0.373 0.223 0.1C0 0.156
8) Crack on column 5
3 RS16 | RS19 | R®s21 | Rszz RS 24 psz7 |
0.001 -0.887 0.147 -0.272 0.129 0.308 0.188 |
0.100 -0.850 0.088 -Q.111 0.084 0.168 0.110
0.200 -0.392 0.043 -0.012 0.050 0.073 C.026
0.300 .201 0.018 0.025 0.017 0.021
0.400 -0.0687 ) 0.002 0.008 -0.C04 0.003
0.5C0 0.018 0.001 -0.002 0.008 0.001
0.8C0 0.057 0.011 -0.0C86 0.047 0.013
0.700 0.050 0.032 -0.008 0.118 0.040
0.800 -0.004 a.ces 0.001 0.223 0.081
0.900 -0.108 - 0.111 0.012 0.282 0.138
0.999 <Q.271 0.168 0.028 0,539 0.211 |
. —BA _
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TABLE 4
. (continued)
W
8) Crack on column §
¢ RS16 | RS19 | RS2t | RS2z | RS2¢ | RS2
_
0.001 0.108 0.036 20.424 -0.017 - [0.307 0.021
0.100 0.064 0.020 -0.274 -0.015 -0.141 0.012
0.200 0.034 0.009 -0.155 -0.011 -0.036 0.008
0.300 0.012 0.002 =0.054 -0.008 0.010 0.002
0.400 0.000 0.000 -0.001 -0.0C0 0.001 0.000
0.500 -0.004 0.001 0.036 0.007 -0.060 -0.001
0.600 -0.001 0.005 0.048 0.014 =0.168 -0.0C0
0.700 0.008 0.012 0.036 0.022 -0.320 0.001
0.800 0.023 0.021 0.003 0.029 -0.510 0.002
0.500 0.043 0.031 -0.051 0.035 -0.735 0.004
0.999 0.087 0.043 -0.122 0.041 |-0.981 0.005
7) Crack on column 7
| & RS 18 BS 19 RS 21 RS 22 RS 24 RS 27
0.001 0.414 0.414 0.192 0.192 0.317 0.317
0.100 0.254 0.254 0.138 0.136 0.2C3 0.203
0.200 0.139 10.139 0.092 0.092 0.118 0.118
0.300 0.062 0.082 0.057 0.057 0.060 0.060
0.400 0.018 0.018 0.030 0.030 0.022 0.022
0.500 -0.002 -0.002 0.010 0.019 0.003 0.003
0.600 0.C05 0.005 - +0.004 -0.004 0.001 0.001
0.700 0.029 0.039 -0.013 -0.013 0.016 0.016
0.800 0.059 0.099 -0.017 -0.017 0.048 0.048
0.500 0.188 0.188 -0.016 -0.016 0.059 0.08%
0.559 0.301 0.301 -0.012 -0.012 0.164 0.154
8) Crack on column 3
t RS15 | RS1s RS21 | RS2z RS 24 S 27
0.Co1 0.279 0.27 0.325] | [0.323 0.132 0.132
0.100 0.175 0.175 0.269 0.269 0.083 0.083
0.200 0.088 0.098 g 0.098 0.048 0.048
0.300 0.044 0.044 0.008 0.021 0.021
0.400 0.012 0.012 -0.020 0.0C6 0.0C8
0.500 -0.002 -0.002 0.01¢ -0.001 -0.001
0.600 0.001 0.001 0.119 0.000 © 0.000
0.700 0.021 0.021 0.282 0.008 0.009
0.800 0.059 0.059 0.512 0.025 0.025
0.900 0.114 0.114 0.813 0.049 0.048
0.999 0.188 0.188 1,189 0.079 0.079
e aa
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TABLE 4
(continued)
8) Crack on column 9
& RS16 | RS19 RS21 |- RS2 RS.24 RS 27
]
0.001 0.014 0.014 0.428 10.428 0.0635 0.085
0.100 0.008 0.008 0.289 0.25% 0.029 0.029
0.200 0.001 0.001 0.148 0.148 0.007 0.007
0.300 -0.001 -0.001 0.088 0.056 -0.002 -0.002
0.400 C.000 0.000 -0.002 -0.002 - 0.000 0.000
0.500 0.003 0.003 -0.030 -0.030 0.01¢ 0.014
0.600 0.008 0.008 -0.032 -0.032 0.037 0.037
0.700 0.014 0.014 -0.008 -0.008 0.068 0.068
0.800 0.020 0.C290 0.038 0.038 Q.1Q7 0.1Q07
0.8eC0 0.028 0.028 0.104 .10.104 0.151 0.151
0.299 0.038 0.035 0.188 0.186 0.189 0.198
10) Crack on girder 18
& RS 15 RS 19 RS 21 RS 22 RS 24 RS 27
0.001 3.230 " 0.279 0.255 0.273 0.211 0.288
0.100 1.399 0.173 0.174 0.173 0.128 0.180
0.200 0.241 0.087 0.112 0.102 0.085 0.101
0.300 -0.365 0.043 0.C64 0.051 0.028 0.048
0.400 -0.501 0.014 0.030 C.013 0.C004 0.015
0.800 -0.209 0.001 C.008 Q.c02 -0.C02 C.001
0.800 0.5086 0.005 -0.008 0.001 0.008 0.004
Q.7C0 0.825 0.028 -0.012 0.C1< 0.033 0.024¢
0.8CC 0.247 0.086 -0.008 0.044 0.075 0.083
0.900 -0.754 0.127 0.007 0.091 0.137 0.123
0.599 1.789 0.212 0.032 0.138 0.222 0.207
11) Crack on girder 17
& RS 16 BS19 | RS2t RS 22 RS 24 RS 27 |
0.001 T.212 0.080 0.051 0.184 0.150 0.140 |
0.100 0.805 0.088 0.019 0.107 0.121 0.088
0.200 0.487 0.037 -0.002 0.051 0.0€3 0.048
0.300 0.251 0.021 -0.011 0.018 0.022 0.022
0.400 0.090 0.009 -0.010 -0.001 0.00¢ 0.008
0.500 -0.003 -0.000 0.001 0.001 -0.000 -0.000
0.800 -0.029 ~0.007 » 0.022 0.020 0.003 0.004
0.700 0.012 -0.010 0.054¢ 0.057 0.020 0.019
0.800 0.123 <0.011 g.0co8 0.114 0.051 0.043
0.500 0.310 -0.009 0.155 0.193 0.097 0.083
0.999 0.580 -0.004 0.225 0.2285 0.180 0.134
i Ad IS S e
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TABLE 4
(continued)
12) Crack on girder 20
¢ RS16 | RS1s RS21 | RSe2 RS2¢ | RS27
0.001 0.239 0.123 0.455] 0.170 348 0.123
0.100 0.168 0.080 .| [0.240] 0.102 0.250 0.081
0.200 0.110 0.047 0.089 0.053 0.168 0.048
0.300 0.064 0.023 -0.002 0.019 0.102 0.024
0.400 0.C29 0.007 -0.036 0.001 0.049 0.008
0.500 0.005 0.000 -0.016 -0.002 0.009 0.001
0.500 -0.009 | 0.002 0.058 0.010 <0.018 0.001
0.700 20.013 0.011 0.186 0.035 -0.035 0.008
0.800 -0.007 0.028 0.371 0.078 -0.039 0.025
0.500 0.008 0.055 0.618 0.133 -0.031 0.049
0.999 0.036 0.090 0.928 0.207 -0.012 |- 0.082
13) Crack on girder 21
2 RS 16 RS19 | RmS21 | RS22 | RS2 RS 27
6.001 -0.037 | 0.084 0.081 a88] | -o.12¢ 0.094
0.100 -0.030 0.052 -0.833 20.086 -0.084 0.056
0.2C0 -0.023 .0.027 -0.003 20.017 -0.064 | 0.029
0.3C0 0.015 0.011 0.403 0.020 -0.038 0.010
0.4C0 -0.008 0.002 0.395 0.025 -0.017 0.0C0
0.500 0.000 0.000C. -0.018 0.001 0.001 0.0C0
0.600 0.008 0.006 T0.343 0.055 0.014 0.008
0.7C0 0.017 0.019 -0.297 -0.149 0.023 0.027
0.800 0.025 0.040 0.125 2.271 0.028 0.053
0.5C0 0.035 0.069 |- |0.532 -0.425 0.029 0.052
0.599 0.044 0.1C6 2,127 0s18| | 0.025 0.139
14) Crack on girder 24
- l H
¢ | =ms1e | Rrsie | wms2r | msze | mse« | mser |
0.001 0.003 | 0.017 0.016 0.015 0.552 0.018
0.100 0.001 0.011 0.015 0.011 0.223 0.012
0.200 -0.001 0.007 0.014 0.008 -0.031 0.008
0.300 -0.001 0.003 0.011 0.005 2.166 0.002
0.400 -0.001 0.001 0.007 0.003 -0.181 -0.000
0.500 -0.001 0.000 0.002 0.001 0.075 -0.000
0.500 0.001 .0.000 -0.004 -0.001 0.150 0.001
0.700 0.003 0.002 -0.011 0.002 0.325 0.005
0.800 0.007 0.004 -0.019 20.002 0.150 0.011
0.500 0.011 0.008 -0.028 -0.003 <0.311 0.018
0.859 0.015 0.013 -0.038 -0.002 -0.957 0.027 -




TABLE 4
(continued)

15) Crack on girder 25

& RS 18 RS 19 RS21 |  RS22 | RS2¢ ~| Rse7
0.001 0.017 |- o0.008 -0.022 0.020 0434 -0.020
0.100 0.011 0.005 -0.018 0.010 0.317 -0.008
0.200 0.007 0.003 -0.015 0.003 0.201 -0.001
0.300 | - 0.004 0.002 -0.010 -0.001 0.108 0.003
0.400 0.001 0.000 -0.005 -0.002 0.040 0.003
C.500 -0.000 -0.000 0.000 0.000 20.002 -0.000
0.600 -0.000 0.000 0.007 0.006 -0.019 -0.508
0.700 0.001 0.001 0.013 0.014 -0.009 -0.020
0.800 0.003 0.002 0.020 0.025 0.025 0.035
0.900 0.006 0.004 0.027 0.039 0.087 -0.053
0.999 0.011 0.008 0.034 | 0.056 0.171] |. -0.075

relative to the PNPs (to the lef or to the right) for all the beam elements cn tke left
half of the frame. The preferred directicn of shift is indicated only when the cracked
beam elerment is in the neighborheod of the response station in question. From Table
5, it is concluded that response stations 18 and 24 should be shifted to the right and

station 21 to the left of the respective PNPs of the undamaged frame.

4.6. Development of the General Trends

In this section the transmissibility method will be develcped with the 3x4 frame
of Figurel?. The procedure used is to vary the location of a single crack of known
sensitivity number toroughout the {rame, on each column and girder in turn, and to
compute the relative {ransmissibility change at eackh one of the six response staticns
correscgondiag to eack crack location Trends of relative transmissitility changes as a
functlion of the crack location are then established, which can serve as a diagnosis
procecdure in a practical situation wherein the crack locatica is unknown and the

transmissibility changes are known from measured data

4.6.1. Exciting the Frame at its Fundamental Frequency

Relative transmissibility changes computed for the frame excited at the

fundamental freguerccy are shewn in Table 4, Table 4 is arranged iz 15 groups iz each
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TABLE 5
Direction of Shift of the Response Stations
(IND = No. of the bea= element with the crack,
RS: Response Station, .
R Shift the response staticn to the right of the PNP,
L: Skift the response station to the left of the PNP.)

| RS !
IND
16 21 24
1.2,7,16,17 R
4,5 L
5,21 R
8,8,20 L
3,24,25
8

of which numericzl data for a c:'a;k ona p&"ifcular bear element is presented Crack
location in sach groupof data is varied from the lower (left) end of the element to the
upper (right) end for a column (girder). Significant Ry values are shown framed in
the table, "signifecance” being determized by tke following criteria,

i) An Ry value whose magnitude is greater than 0.1 is consider=d significant.

i) If all or most of the respense stations indicate significant transmissibility
changes for a certain crack locaticn, but some of them indicate muck larger changes
t.b.a:; cthers, then only the larger Ry values are framed. Examples can be seezn in data
groups 1 a=d 4.

ili) If several response stations indicate significant and comparable
transmissibilily changes for a certain crack, the overall trend of transmissibility
changes for that.crackis cpnsidered insigrificant. An example in Table 4 is the case of
a crack oo colurmn 4 at a location of 0.2 from the ground. All of the X7 values for that
crack tave magnitudes between 0.10 and 0.18. Suck 2 crzck may be detectable, but

is not diagncsable.
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.f. crack is considered dizgnosable if it can be located witlin ore or two cells of
the frame; that is, if tke tfend of Rr values for that crack is as described in (ii)
above. Thus, the ranges of crack leccatiors 0.-0.29 and 0.71-1. on column 1, and the
ranges 0.-0.25 and 0.54-1. on column 6, for example, arg diagnosable. The diagnesable
regions of all the beam :lements in Table 4a.n& the response stations exhibiting
siéniﬁca.nt transmissibility changes in each one of those regions are summarized in
Table6. Also shown are the percentages of tbe lengths of the beam elements which

are diagnosabdle. Tkhe following conclusions are drawn Tom Table 6.

i) The response station(s) closest to the crack exhibit the most significant
transmissibility change(s) with the exception that stations 24 and 27 experience
larger charges than stations 21 and 22 for a crack on column 7. Eowever, since
stations 16 and 19 exhibit the mest signifcant changes, the diagnesability of a crack
cn 7 is unafiected. For a crack in regicn 0.91-0.92 of girder 18§, the most significant
changes, wiich are about 0.13, are experieaced at staticns 13, 24, and 27, wkich may
cause a misdiagnosis.

ii) Beam elements wita diagnosable regions larger than 73% are 5, 6, 16, 21, and
24, the last tbree of which kave response stations on them. Soth ends of the coiumns
S and S, on tae other hand, adjoin the end of a girder with a response station. That i,

eolumn S is neightors with girders 16 and 21, and colurmn 6 is with 21 and 24.

.

. iii) All of the regions near the jeints are diagnosable, with the small excestion o
the regicn 0.-0.02 at the left end of girder 21. In tkat region, res_ﬁonse station 22
extibits the most significant transmissibility eh hange which may cz2use a misdiagnosis.

iv) 'I'hg mid-re;'ions of all the elements, with the exception of those carrying 2
response station, are undiagnosable. At the fundamental freguency, these regicns are
usually regions of low stress or low resisting moment. Siope discontinuity in these
regions is, therefore, small for a given crack depth (Section 2.3), wkich reduces itk

effect of the crack on the structural rescense.




TABLE 5
Summary of the Diagnosable Regions f-om Table 4
IND = no. of the beam element with the crack
DR = diagnosable regicn on the beam
RS = response station(s) exhibiting the most
significant relative transmissibility ckange(s)
PD = total percentage of the beam length which is diagnosabie |
IND | DR | RS | eD(m) |
f
i .00 -.28 18 )
L1 71-10 - 18 . o8
.C0-.28 18
2 85-1.0 16.21.24 “
! .00 - .04 24 -
31 s3-10 24 al
. .00 -.13 16,21
Sl s4-10 16 49
i .00 -.38 18
5 | .38 - .87 21 79
! 57- 1.0 21,24 4
| .00 - .14 21,24
6 | 14 -.28 21 76
| .50 - 1.0 24
I
.CO-.14 16,18,24,27
"|  s0-10 16,19 34
| .00 - .20 21,22,185,19
& 58-1.0 21,22 52
: .00 -.25 21,22
$ |- .78-.89 24,27 47
| .e9-1.0 24,27,21,22
.00-.21 18
.25 -.51 16
54 -.79 16
18 .83 - .91 16 87
.81-.52 19,24,27 ’
.§2- 1.0 16
.00 -.38 : 16 J
17 .80 - .84 18,22,21 cs
.84 - 1.0 18 !

P TP A
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TAELE 6
(continued)
noj DR | B | =oem |
.00 -.14 21,24
‘ 20 .14 -.30 24 . 87
.63-1.0 21 :
.00 -.02 22 -
.02 -.03 22,21
.03 -.19 21
22 -.47 21
21| s3-m 21 81
71-.74 21,22
74 -.81 22
B1-1.0 21,22
.00-.15 24
.25 - .47 24
2¢ | sg-ls1 24 73
85-1.0 24
00-.31 | =24
B | le2-10 | 24 3e

Diagnosatiiity for the whole frame = 62.7 % . !

The overall diagncsability of the frame excited a! its fundamental frequency can
be computed by adding ali the percentages in Table 6, multiplying e sum by Lwe,
subtracting the perceniages {or 7 tarough 8 cnce and dividing the result by the total
aumber of beam elements, 27, This yields a diagnesability for the whole frame of

82.7%. In other words, the mid-regions of all the beam elsments which are

undiagnosable make up the 37.27% cof the total frame area.

4.6.2. Exciting the Frame at the Third Modal Frequency

The previcus section indicated that mid-regicns of the beam eiements, whick are
regions of low resisting moment at the fundamental freguency, ars undiagnesatle. if
the frame is excited at a higher modal frequency yielding diferezt complex medal
skapes and moment distributions, more segments cf the frame beccme diagnesable.

Tbe PNPs and correspornding dimensicnless deflections for the frame excited at the

second and tbird modal frequencies are summarized in Tabie 7.

. «n—_--——-_—___.-l
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' . TABLE 7

PNPs at the Second and Third Mcedal Mraquenciss
(undamaged frame)

Excitation on column 7 at .g5

(Girders 18, 22, 27 are symmetrical with 16, 21, 24.)

-

girder no. ‘{
PNP location | 5785
|

ly °| x10% at PNP |

24
L4

girder no, 1' 16 | 21
PNP location ! .3285

o
(@]
[(0]
Py

ly *| x10? at PNP JI 1.5 ]l .72 1.2 !

It will be assumed that the responss stations are at the same locations as in the

w

pravious szcticn. Then, at the second medal Srecuency, the dirmensioniess deflection
at tze resconse staticns on girders 21 and 24 are too small Lo be measurable {(Part ¢

of Table7). Tais is a result of the fact tet the PNPs at the first two modal frequencies

~n

are close o each cther for both girders. The FPNF of girder 1§ at ike seccnd

freguency, towever, is relatively far from that at the fumdamental frequency. The

situaticn is reversed at the third modal freguency (Part 2 of Tabie7), It is exgected

Loalb exciting the frame al the third freguency will alter the medal shape more

significantly than exciling it at the second freguesncy, thus maitsz more addition
regions of i-e rame diagnosable.

Computations similar to those cf the previous secticn wers carried out at the

third mocdal frequency. Regions which become diagnesable in addition %o those in
Table 6 are cresented in Table g, Also shown are the regions which may, at ke
fundamental frequency, be misdiagnesed and are pow diagnosable correcily at th

3 7, ag ag ble correcily at the

an

third freguency. Those are tze regions 0.-0.14 cn column 7, 0.51-0.52 cn girder 1§,
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and 0.-0.05 cn girder 21. Table 8 indicates that the general trend established at the
fundamertal T=guency is preserved to a large extent at (ke third {requency. Tzat is,
a crack affects the transmissibility at the closest response station the mest.
Exceplicns are for the cases of a crack on elements 3 and 24, in which statiorn i85

exhibits the most significant transmissibility changes for the regions shown, rather

TABLE 8
Additicnal Diagnosable Rezions at the Tzird Mecdal Freguenc
25 g
All of the pararmeters same as in Tabie 4 excezt 84=2.28.

Nomenclature same as in Table s with prefix A denoting additional

| o | ATR l RS | APD(7)
oy ] wrem 16 | 24
29-.47 | 16 |’
2 . 55-.73 16 | 42
| .78 - .85 | 18 | |
Looa | .04 - .51 | 16 [ 47 |
' .13-.29 j : . nn |
£ A7 - .84 1 18 ? 33
- , ‘ |
| 38 - .47 | 16 |
5 51-.59 16 ’ v |
65 | .25 - .41 | 21 1 15 ,
| .00 -.14= 15,19 |
T .53 - .50 16,19 ! 17 !
!
g 20 -.29 16,19 "
| ) .58 - .58 21,22
s ] 25-.47 | euz | 22 |
| ! 23 - .26 | 16 |
s | oEE B
| 81-.920 | 16 |
21 | .00 - .03" | 21 | "
24 '[ .15-.25 ’ 16 } 10
17,20,25 | APD less then 1% }

* (not included in AFD)
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than station 24. This is not surprising since station 16 is muck closer to the PNP of

girder 16 at the third frequency than station 24 is to that of girder 24. Cr the other

band, it is expected that more additional regions cn girder 20, {or example, would be

diagnosable if station 21 were closer to the PNP of girder 21 at the third frequency.

With the addition of the new diagnosable regions, the diagnosability for the whole

frame now becomes 7S%, with the diagnesability of the beam elements 7, 8, 8, 17, 18,

20, 23, 25, and 26 remaining below the average. It is also expected that if (e critericn

stated in Section 4 is fully cbeyed in the selection of the beam elements for ile

response stations, the diagnosability of the structure will increase. According to that

criterion, girders 18, 23, and 26 would carry the response stations rather than 1S, 22,

and 27, respectively.

<7 . =5 .
// :/ /,_ o
I A
I R | A5 |
« i ]
K ""/'—_l—:?'—'t_— i ..
W ~ |
/\M:%‘..— -~ J}! .
{ §‘§_: o l
( L =N R !
!/ o S,
o %) t
[ N
\
K | :
IR 15 ‘
\ !
\27 7r 777\ T rJ‘r

Figure 29.1nfluence regions on the {rame.
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The general trends esstablished above are presented in the form of “"influence
regions” in F‘lgur;e 29. Influence region of 2 response station is defined as the region in
whose diagnosability the staticn in question plays the most influential role. I cther
words, a crack in that region afects the transmissibility at that particular staticn the

most.

4.7. The Effect of Crack Severity cn the Trends

The previous computations were carried out for 2 crack of sensitivity numtber
©=0.02¢ (Eq. 2.40). For beams with slenderness ratios (length to beam-depth ratio) of
10 and 20 and for a Poisson's ratio of 0.3, tkis @ corresponds to the relative crack
deptbs of 0.3 and 0.4, respectively. Numerical results show that changing 8 does not
have significant eflects on the trends. Only the transmissibility changes are reduced
or amplifed depending on whether G is decreased or increased, respectively. As @
gets smaller (of as the crack gets shalloyver). bowever, the diagnosable regions cf the
beam’ elements a;:'e squeezed toward the frame joints, thereby reducing lbke
diagnosability of the frame. To illustrate the effect, diagnos'able regions on beam
elemeats 3, 8, 20, axd 24 at the fundamental frequency are cormputed for a crack of
©=0.0C0S and presented in Table 9, This © corresponds to the relative crack depths of

0.14 an C.20 for beams with slenderness ratios of 10 and 20, respectively.

- Two diferent sets of response locations are used in generating Table 9. One
set{group 1 cf the table) is the same as that used previously. Iz the second set(group
2), the response stations are moved closer to the PNPs. In both cases, diagnosable
regions of the beam elements studied are smaller than these for a crack with
©=0.024. However, when the response stations move closer ‘o the PNPs, the
diagnosability increases significantly. For a crack with ©=0.001, corresponding to tke
relative crack depths of 0.062 and 0.088 for slenderness ratios of 10 a2nd 20, no
segments of the elements 3, 6, 20, or 24 are diagnosable when the response staticrs
are at the locations given in Table 9. In conclusion, if smaller deflecticns can te

placed closer to the PNPs, larger rezions become diagnosable.
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TABLE 9
Diagnosable Regions for a Crack with @=.005

(Nomenclature same as in Table 8)

1) Parameter values same es in Tabie 8 except for ©

IND | DR RS | PD(%)
3 .80 - 1.0 l 24 ! 10
6 | 78 - 1.0 t 24 22

20 | 84+ 1.0 } 21 18

24 ! .92 -1.0 ‘ 24 8

2) Parameter values same as in (1) except for the response locations

£.9 = .613 g2, = .483 £2, = .634
¢1g =.387 20 = .517 £ = .386
IND | DR | RS | PD(%)
3 | .70 - 1.0 | 24 | 30 I
, .00-.12 21
. 57-1.0 24 4
I .00 - .08 21.2¢
20 | 72-1.0 21 3
i .00 - .09 24
24 .68 - .74 24 27
[ .88-10 24

4.8. The Effect of Damping on the Trends

»
- et
¢ Saatae

As the dampi.né {actor, d, is increased, the amplitudes of deflections, |y
therefore, the transmissibilities are reduced. Table 10 lists four groups of relative-
transmissibility-change data for a § value of 0.1'0. Other parameters are kept the
same as in Table 4 which contains data for §=0.01. The compariscn of Tabie 10 witk
the corresponding data groups in Table 4 yields the following conclﬁsicns:

i) Positive Ry velues are invariably reduced as § iccreases. An example is the

case of a crack on girder 20. Although all cf the responses are influenced in tkis case,
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TAELE 10
Relative Transmissibility Changes vs Crack Location
Excitation on column 7 at a distance of .95, Bs = .96, 6§ =.10, 6 =.024.
Response Locations :
£ = .618 Ea1 =.475  f2, = .49
£1g =.382 §220 = .825 £x» = .351
(& = erack location, RS: response station)
1) Crack on column 3

& RS 16 RS 19 RS 21 RS 22 RS 24 RS 27
0.001{ -0.037 0.001 0.036 0.008 -0.001
0.1C0 -0.021 0.0C0 0.021 C.003 0.049 -0.001
0.200 -0.009 0.000 0.Cos Q.001 0.008 -0.C0Q0
0.300 0.CQ0 0.0Q0 -0.0C0 -0.000 0.0C0 0.000
0.4C90 0.0C6 0.000 -0.008 -0.C01 . 0.024 0.001
0.500 0.00% 0.000 - -0.010 -0.001 0.07¢ 0.001
0.800 0.009 0.001 -0.011 -0.002 0.148 0.coz2
0.700 0.008 0.001 -0.011 -0.001 0.240 0.003
0.800 0.002 g.001 -0.008 -0.001 0.345 C.CC«
0.800 -0.004 0.002 -0.004 -0.0G0 0.457 0.004
0.999 -0.011 0.002 0.001 0.000 0.571 0.005

2) Crack on column 6

£ RS 18 RS 19 RS21 RS 22 RS 24 RS 27
0.001 0.07¢ 0.007 -0.429 -0.044 -0.325 -0.cCc8
0.100 0.048 0.004 -0.280 -0.030 -0.153 -0.cc3
0.200 0.027 0.002 -0, 158 -0.018 -0.042 -0.C00
0.300 0.011 0.001 -0.085 -0.008 0.008 0.001
0.400 0.000 0.000 -0.001 -0.000 0.001 0.00Q
0.500 -0.0C5 -0.000 0.034 0.005 . -0.c02
0.600 -0.0C8 0.0c00 0.042 0.009 +~0.006
0.700 -0.003 0.001 0.024 0.010 -0.010
0.800 0.005 0.0C2 -0.0158 0.010 -0.018
0.900 0.015 0.004 -0.073% 0.008 -0.023
0.999 0.029 0.008 -C.1580 0.004 -0.C30
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TABLE 10
(continued)
3) Crack on girder 20
A RS 18 RS 19 RS 21 -RS22 RS 24 RS 27
a.001 0.115 0.010 0.306 0.052 212 C.011
0.100 0.089 0.007 0.185 C.0=28 0.166 0.008
0.200 0.065 0.C05 0.C45 0.010 . 0.121 0.C08
0.3cQ 0.043 0.003 -0.021 -0.001 0.080 0.00¢ |
. 0.400 0.C23 g.001 -0.041 -0.008 C.042 0.002
Q.500 0.005 0.C00 -0.018 <0.002 0.0Ce 0.000
0.600 -0.011 -0.000 0.055 0.007 <0.020 -0.001
0.700 -0.023 -0.000 0.171 0.024 -0.045 -0.002
0.800 -0.C34 0.001 0.330 0.047 ~0.084 - -0.CC3
.0.800 -0.041 . 0.002 0.531 0.078 ~0.079 '-0.003
0.899 -0.046 0.004 0.788 0.110 ~0.089 -0.003
4) Crack on girder 24
¢ RS 18 RS 18 RS 21 RS 22 RS 24 RS 27
C.001 -0.011 0.002 0.co1 0.Coo 0.588 0.005
0.100 -0.008 0.002 0.C05 0.001 0211 0.co2
0.200 -0.C08 0.001 0.008 0.002 -0.037 -0.000
0.200 -C.C04 0.CoQ 0.008 0.co2 -3.168 -0.001
0.400 -0.C02 0.C00 0.008 0.0G2 ~0.181 -0.001 ¢
C.500 -0.001 -0.C00 0.002 0.001 - ~0.075 -0.001
0.600 -0.001 C.000 -0.004 -0.001 0.143 c.001
Q700 Q002 0.000 -0.012 -0.003 0.323 0.004
0.800 0.003 0.C01 -0.022 -0.0Cc6 0.148 Q.Co7
0.500 0.004 0.002 -0.034 -0.009 -0.313 g.ci1
0.598 0.005 0.003 -0.047 -0.012 0,872 0.018

the most adversely affected transmissibility c..a.nges are t

hose at t-e staticns 19 and

27, the farthest two stations from the crackesd girder, which were reduced to zear

zers values. The stations near the crack are not affected so =1,mﬁc=nt.ly Exampie:

the case of a crack on girder 24.

ii) Negative Ry values are affected less by an increase in 6. The magritude of a

negative transmissibility cbhange can be amplified or reduced, both not very

significantly, Example: R» values at station 24 for a

crack cn beam elemments 8 and
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20.

The diagncsable regions with 6=0.10 are computed a=d gresented in Table 13.
When these regions are compared with the corresponding data in Table 6, it is
observed that an increase in the damping factor from 0.01 to 0.10 leaves ihe trends
essentially unaffected and reduces the diagnosa;le regions slightly (between 0 to 5

percentage points for the cases presented in Table 11).

4.9. A Response Station on a Column

At the funda.z;ental frequency, the transmissibility change on a column for a
given crack is found to be almost independent of the response location .cn that
coluran. Relative transmissibility changes at a response station on column 8 for a
crack on vﬁr‘.ous beam elements are stown in Table 12.1a this example, the excitaticn
is on column 1. Only cne crack location on each beam is considersd. Beams are
grouped based on the closeness of the corresponding Ry values. For example, A7
values for a crack at 2 location of 0.15 cn each of the beams 1 7, 13 and 18.range
7o 0.125 to0 0.180. The A7 velue for 2 particular crack is nearly the same regardiess
of where the response station is located on column §. That nearly constant value for
the crack cn column 7, for example, is 0.15. Furthermers, the trazsmissibility
changes at 2 station on column § 2re very close to those on column &, as well as being
nearly constant along the length of column 9.

Table 12 indicates that as the crack is moved to upper levels on the frame, the
Rp value on column 8 decrsases. There is especially 2 signﬁcaz‘ decrease &om the

first level to the second(Fig. 17). Tke overall Ry vaiues, nowever, are not very large.

between a crack on the first level and on the upger levels.

4.10. Effect of the Crack Model or the Transmissibility Yethod

In this study, a Mcde-] crack has been modeled as a torsional spring. The crz2ck
suriace Das been assumed t9 be perpendicular to the neutral axis of the Seam
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TAELE 11
Diagnosable Regions for a Frame with Heavier Damping
Parameter values same as in Table 6 exzcept 6§ = .10
Nomenclature same as in Table 8.
IND | DR ] RS PD(%)
.00-.03 24
3 54-1.0 - 24 43
.00-.28 21
8 54-1.0 24 =
.00-.15 21,24
20 .15-.25 24 61
.84-1.0 21
00-.14 : 24
.25-.48 24
24 58 - .81 24 7S
.85-1.0 24
" TABLE 12 .

Relative Transmissibility Changes at a Response Station cn Coiumn 8
- -
6=.01, excitation oz column 1 at .25, 84 = .96
= .024, cracklocationis.15 on all the beam elements

IND = no. of the beam element with the crack

‘‘‘‘‘

Rr .004 - coa, .002

l 1.7,13,16 Is.nl 20,21,23 l 24,25,25 l 15
| |
| |

element con which the crack is located It can be shown, however, that the trernds of
relative transmissibility cngnges are independent of the crack model as long as the
crack introduces a reduction in the flexural r'.gidiiy cf the beamn. To this end, a ore-
story four-span frame excited at the mid-cclumn is analyzed (Figure 30). The

fundamental characteristic value of such a uniform frame is 1.687. In the
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computaticns, the frame ig excited at a 84 vaiue of 1.88, Damping factor is taken to
be 0.C1. Two response stations are placed on girders § and 8 at the locations 0.89 and
0.58, respectively. (PNFs of these girders for a uniform frame are at 0.381 and 0.551,
respectively, when the excitaticn is on column 3 at a distance of 0.95 from thse
ground.)

First, the relative transmissibility changes at tke two stations of the uniform
frame were computed for a crack of 8=0.01 on girder 9, as the crack location was
varied along the girder. It was observed tkhat the station on girder 8 exhibited much
more significant transmissibility changes except when the crack was in the mid-
region of ‘girde:' 8. In the latter case, both transmissibility changes were smgll. Next,
the length of girder S was assumed to be 207 lenger than the lengths of the other
columrns and gir.ders. which made the former less rigid than the others a=nd
cualitatively simulated a crack. With the other parameters kept the same, the
transmissibilily changes at the two staticens relative to the transmissibilities across
the undamaged uniform frame were computed. The relative transmissibility cbanges
due to the lengihening of girder @ were found to be -0.41 and 0.88 at stations 5 and 8§,
respectively. As the result indicates, softening in a regicn of a frame structure

afects the respeonse at the nearest station the mest.

8 @ -
1 2 3 4 5
>rr rrr rrr ‘7'17';' hazs

Figure 30. A one-story four-span framse.
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CHAPTER 5

Discussica and Conclusions

Nondestructive testing of large-scale sitructures is still in its infancy. Local
methods currently used require a sweeping of the whole structure and can becomse
costly and time-consuming. A global method w‘cez;:by 2 structure can be continually
monritored and damage can be isolated at least within a section of the structure is
needed. Such a methed, the {racsmissibility methed, is preposed in this study. The
transmissibility method. which is based on the relative transmissibility c.‘:;.nges at
various response stations, isolates a crack to witkhin cne or two cells of a frame
structure after which a local methed may be used to pinpoint the erack. In the study,
the effects of excitation location and freguerncy, locaticn of respense stations, crack
lecation and severity, and damping cn the relative t:-azémissibility changes are

investigated. General trends of the values of transmissibility changes as a function ©
=2

»

these factors are established. In practice, toese trends can be used fer locating a
crack, given the transmissibility changes. The following conclusions are reached frem
the transmissibility analysis:

.i) The most significant transmissibility caange is usually observed at a response
station in the neighborhood of the crack

ii) The ‘rends as stated in (i) are highly insensitive to the excitation location.

iii) The treacs are insensitive to the crack depth and material properties such as
damping.

iv) The trends are highly insensitive to the location of the response stations when
the stations are M the vicinity of the PNPs. Trends, however, are lost away from the

PNPs, in wkich case damage rmay be dstected but cannot be lccated. On the other

bard, the closer the response stations Lo the FNPs, the larger are ihe transmissibility
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changes and the chances of diagrnosing a crack.
v) Amplitude of deflections and accelsrations are small near the PNPs. Therefore,
how close the response stations can be located to the PNPs depends on the signal

levels which can be measured

vi) Cracks at or near the joints of a frame are most easily diagncsa-ble. A crack
located away from tke joints, in the mid-regions of the beam elements, may not be
diagnosable.

vii) Diagnosability of a crack increases if transmissibility data is available at
more than one resonant frecuency.

Conclusion (vi) is especially encouraging in the light of the fact that structures
such as offshare platforms usually fail at tbhe foundation or develop cracks at the
welded joints.

The elegtrical apalcgy method as developed for frame structures in this study
provides an economical test for the analysis of large structures. The respenses
cemputed with the analogy are exact inscfar as SBernoulli-Euler theory is exact. The

scuctures analy:ed i the study are assumed rigidly fxed at the ground level Inthe
case of non-rigid foundations, foundation Sexdbility can he accounted for by inseriing
resistances in the electrical circuit at points corresponding to the anchors{34, co.
82-85).

The other nondestructive method of damage diagnoesis investigated in this study
is the frequency methed. In cemplex siructures, the changes in roodal frequencies
due to a crack are small Therefore, the frequency method is zot suitable for such

structures. For simple structures such as teams, hovever, it is a feasible method

It is shown in the study that closely spaced multiple cracks can be effectively
represented by a single cr,ick for whick the sernsitivity cumber, 8, is appromately
equal to the sum of the individual sensitivity aumbters. Uncertainty exists, however, in
diagnosing such a damage as to whether there is only cne major crack or several

clesely spaced minor cracks. Nevertheless, locadon of the damage can be identified
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quite accurately.

In the case of a structure with several cracks, only cre of which is severs, it is
possible to diagnese the major crack The contributicns of minor cracks to frequency
decreases is small compared to that of the severe crack The rslative frequency
changes, R;, in such a situation, exhibit a trend similar to that which would be
observed were the mezjor crack the only crack present on the structure. If thare is
mere than one major crack, not closely spaced, on the structure, it is, in general, not
possible to diagnose deterministically the damage with only a few 7; values known.

In the frequency method, curves of relative frequency ckanges, 57;, versus erack
location yield valuable information regarding darmage diagnosis. It may be p'cssible to
estimate damage location, provided there is only cne major cracic, by orly looking at
the relative magnitudes of [sequency decreases and using the relative-change curves.

L

In diagnesing damage in a structure using the [resguency methed, given ihre

0

post—dar:.zage characteristic values, £, the solution is sought for a sirgle crack since
there are not enough equations to sclve for a large number of cracks. In sciving for a
single crack (i.=. for e 2nd &), tvo measured J values are actually used Erst. The '
third measured 8 value is then compared with the computed counterpart which would
be produced by the crack with the characteristic pair (2, , @y ). It is shownttat the
two 8 values may not matcek closely even though the diagnosis is accurate (that is, e4q
aad O, identify the major crack correctly), the discrepancy ressibly being due to the
preseace of cilier mincr cracks. If the discrepancy is large, then tze soiution is
rejected witk t-e conclusicn that there is mere than cne major crack. Cn the cther
hand, the choice of the pair of measured 8 velues to be used in computing ey and 244
may afect the dlagncsis. In some cases, choosing the two characteristic values wroica
correspond to the largest two R values leads to the correct diagnesis. It is not clear,

however, whether taere is a right choice in each case.
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1

SUSROUTINE TP.&VS(N.LLKES.BC.TZFE,ND.IE.XE.iT.XI‘.NT .BUN,DAM,

* U.X,XTR.Z.RE.JUR IXR, WA, WK IWX)
o .
COMPLEX*18 U(TURIUR). XTR(IURIR), Z(XRIXR), X(XRIUR).
* RE(IXR). WA(1). DCMPLX, CDSIN, CDCCS, CDEXZ,
* B, Bl, W, WP, Q, QF, P, PP, EXP1, EXPg, ALF

REAL*S XT(NT). ES(1). EC(1), THE(1), WK(1), XE. BUN, DAY, D1, D2, 3, D4 _
INTEGER IT(NT), IWX(1), IND(1), N, M, X, IE, NT, IUR, IXR

C SESESA SN A NSNS NISESRASRARSBEREER AR BTANBRARAT AR RS -

C TEIS SUBRCUTINE COMPUTES TEE DIMENSIONLESS CCMPLEX DEFLECTIONS

C AT SELECTED LOCATIONS ON AN Nx\ PLANAR FRAME STRUCTURE WITE OR

C WITECUT CRACKS IXCITED AT AN ARBITRARY LOCATICN BY A SINUSCIDAL

C FORCE. TEE FRAME IS ASSUMED TO EAVE UNIFORM PROPERTIES EXCEPT -

C FOR TEE FLCOR EEIGETS AND SPAN WIDTHS. TEE BEAM ELEMENTS

C COMPOSING THE FRAME ARE NUMBSERED AS EXPLAINED IN SECTION 2.4,

C TES FRAME IS SIMULATED 3Y II CIRCUITS. '

c

C WRITTEN BY MEEMET A AXGUN

C DATE LAST REVISZD : APRIL 1985

o

C INPUT: (ALL GF TEE INPUT VARIABLES ARE PRESERVED)

N NUMEER OF STCRIES OF THE FRAME.

'S NUMBER OF SPANS OF THE FRAME (NQ. OF ANCHORS - 1).

‘X NUMBEER OF CRACKS ON THE FRAME (ZERC FOR NO-CRACK CAST).

ES A VECTOR OF LENGTH N+M. THE FIRST N LOCATICNS SECULD CONTAIN

TEE RELATIVE FLCCR EEIGHTS, L/ L¢, IN TEE ORDER FROM GRCUND
UP, WHERE L IS TEE REFERENCE LENGTE CHOSEN FOR TEZ FRAME AND
L, 1S THE EZIGHT OF THEE ith FLOOR. THE LAST M LOCATIONS
SEOULD CONTAIN TEE RELATIVE SPAN WIDTES, L;/ Lg, IN TXE CRDER
FROM LEFT TO RIGET, WEERE Z; IS TEE WIDTH OF THE jth SPAN.

EC A VECTOR OF LENGTE MAX(1,K) CONTAINING THE RELATIVE CRACK
LOCATIONS, LG/ Ly, WEERE L; IS THE LENGTE OF THE jtk
BEAM ELEMFENT WHEICE CARRIES TEE ith CRACK WEEN TEZ ith CRACK
IS THEE ONLY CRACX OR TEE FIRST ONE OF A GROUP OF CRACKS CN
TEE jth ELTMENT, TEE DISTANCE LG, OF TEE CRACK IS MEASURED
FROM THE LEFT(LOWER) END OF TEE GIRDER(COLUMN) ON WHEICKE TEE

OO0 OO0 ao0a0oaoaaqaaaqanaanq
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CRACK IS LOCATED. OTEERWISE, L, IS THE DISTANCE BETWEEN TEE
(i-1)th AND ith CRACKS. TEE ORDERING OF TEE CRACK LOCATIONS
WITEIN EC SEOULD FOLLOW TEE NUMBERING SCEEME EXPLAINET IN
SECTION 2.4. NAMELY, FIRST TEE LOCATIONS CF TEE COLUMN CRACKS,
THEN THOSE OF TKE GIRDER CRACKS SHOULD BE WRITTEN.

0 < EC(J) < 1. EC IS IGNORED WEEN K=0.

THE A VECTOR OF LENGTE MAX(1,X) CONTAINING TEE SENSITIVITY
NUMBERS, @, OF TEE CRACKS IN TEE SAME ORDER AS EC.

TER(I) # 0 for 1 << K IGNORED WEEN K=0.

IND A VECTOR OF LENGTE MAX(1,X) CONTAINING THE NUMBERS OF TEE
BEAM ELEMENTS ON WHEICE THE CRACKS ARE LOCATED, ORDERED IN
CORRESPONDENCE WITH EC. IND(1) = IND(2) < ... = IND(X). '
[E TEE NUMBER OF TEE BEAM ELEMENT ON WEICH THE EXCITATION IS’
APPLIED.

XE TEE RELATIVE LOCATION OF TEE EXCITATION, LE/L(IE), WEERE LE
IS TEE DISTANCE TO THE EXCITATION FROM TEE LEFT(LOWER) END
OF TEE GIRDER(COLUMN) ON WEICKE TET EXCITATION IS APPLIED.
I{IE) IS TEE LENGTH OF THAT GIRDER(COLUMN). 0 <XE < 1.

TOTAL NUMBER OF RESPONSE STATIONS ON THE FRAME.

A VECTOR OF LENGTE NT CONTAINING TEE NUMBERS OF TEE ZEAM
ELEMENTS WEICH HAVE A RESPONSE STATION ON TEEM. ONLY ONE
RESPONSE STATION PER BEAM ELEMENT IS ALLOWED.

IT(1) < IT(2) < ... <IT(NT).

XT A VECTOR OF LENGTE NT CONTAINING TEE RELATTVE LOCATIONS,
LT(J)/L(IT(J)), OF TEE RESPONSE STATIONS ON TEE
CORRESPONDING BEAM ELEMENTS, WEERE L(IT(J)) IS TEE LENGTH
OF THE PARTICULAR BEAM ELEMENT.

BUN UNDAMPED BETA VALUE.

DAM DAVPING FACTOR.

[UR N*(M+1) + 2°K + NT + 1. THE ORDER OF MATAIX U.

IXR N+K+ NT + 1. THE ORDER OF MATRX Z.

OQUTPLT:

?

RE A COMPLEX VECTOR OF LENGTH IXR CONTAINING THE NONDIMENSIONAL
~ TRANSVERSE DEFLECTIONS, y *. TEE FIRST N LOCATIONS CONTAIN TEE
LATERAL DISPLACEMENTS CF TEE N FLOCRS, ORDERED FROM TEE FIRST

OO0 a00000000000000a0000000a0a0a0a0000a0a0a0aa0aag$a0a a0
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FLOOR UP. TEE NEXT X LOCATIONS CONTAIN TET DEFLECTIONS AT TEE
CRACKS, ORDERED IN ACCCORDANCE WITE EC. TEZ DEFLECTIONS AT TH=
RESPONSE STATIONS ARE CONTAINED IN TEE NEXT NT LCCATICNS. TH=E
LAST LOCATION CONTAINS TEE DEFLECTION AT THEE EXCITATION PCINT.
THE CEANGES IN TRANSMISSIEILITIES CAN BE CBTAINED BY COMPUTING
TEE AMPLITUDES OF DEFLECTIONS AT TEE RESPONSE STATIONS WITE
AND WITHOUT THE CRACK(S).

WORK ARRAYS:

U
X

A COMPLEX ARRAY OF ORDER IURX IUR
A COMPLEX ARRAY OF ORDER IXRXIUR

XTR A COMPLEX ARRAY OF ORDER IURXIXE

y/
WA
WX

T IWK

A COMPLEX ARRAY OF ORDER IXR X IXR.

A COMPLEX VECTOR OF LENGTE [UR*(IUR + 2).

A REAL VECTOR OF LENGTE IUR. .

AN INTEGER VECTOR OF LENGTE X + 2°NT + LTEE FIRST X LCCATIONS
ARE RESERVED FOR TEE MULTIPLICITIES OF TEE CRACKS ON A BEAM
ELEMENT. TEZ NEXT NT + 1 LOCATIONS SOMETIMES CONTAIN CRACK
INDICES WrEN A CRACK AND A RESPONSE STATION OR THZ EXCITATION
ARE LOCATED ON THE SAME BEAM ELEMENT. TEE NUMBERS OF TS
ROWS IN Z MATRIX WHEICE CORRESPOND TO TEE DEFLECTIONS AT

TEE RESPONSE STATICNS ARE SAVED IN TEE LAST NT LOCATICNS.

REQUIRED IMSL ROUTINES :

LES2C (COMPLEX LINEAR EQUATION SOLVER) AND OTEER ROUTINES CALLED 3Y IT.
LEQ2C FACTCRS T=E COEFTICIEZNT MATRIX INTO TEE L-U DECOMPCSITION

CF A RCWWISE PERMUTATICN OF A AND SOLVES THE SYSTEM. LES2C COMPUTES
TEE RESIDUALS AND USES ITERATIVE IMPROVZMENT UNTIL TEE SCLUTION

IS ACCURATE TO MACHEINE PRECISION. (RET: IMSL LIBRARY REFERENCE

MANUAL, 9TH ED., V.2, CEPT. L, IMSL. INC,, 1582.)

REQUIRED FORTRAN FUNCTION SUBPROGRAMS :

CDSIN, CDCTS, CDEXP, DCMPLX, DSQRT, DMIN1, DMAXL.




C ERROR CONDITIONS :

c :

C [F IE=IT({J) FORANYJAND ABS(XE - XT(J)) IS SMALLER THAN

C &D4CRIF IND(I) = ORIT(J) FORANY I ANDJ AND

C EC() =XZ ORXT(J). TEEZ SUBROUTINE RETLRNS TO TEE CALLING PROGRAM.
C snssssnas SesueEEssEEASSERENASSsEsIRSSyISsAsssusasssnsaNann
o

C COMPUTE THEE DAMPED B VALUE

C

D1 = DSQRT(1.D0+DAM*=2)
D2 = .5D0/DSQRT(D1)
D3 = .5D0*CSQRT(.5D0+.500*D1)/D1
B = BUN*DCMFPLX(DSQRT(D2+D3),-DSQRT(D2-D3))
o
C FIND T MULTIFLICITY OF CRACKS ON ZACH CRACKED ZLEMENT
o
WK(1) =1
F(X.LE.1)GOTOS
3=1
KMi=K-1
DO4Jl =1, KM1
IF (IND(J1+1) .NE. IND(J1)) GO TO 3
IWX(J3) = IWK(J3) + 1
GOTO 4
3J3=J3+1
IWK{J3) =1
4 CONTINUE
c
C CLZAR TEZ MATRICES
C
5 DO8J1=1,IUR
POsI1=1, XR
8 X(11,J1) =0.D0
DO7I1=1,IUR
7 U(11.J1) =0.D0
8 CONTINUE
DCgIl=1, IR




9

o

DOgll=1LIXR
Z2(I1J1) = 0.20
NMP1 = N2(M+1)

C SET VARIABLES

c

12

c

JET=1
KR=1

I=1

3=1
J4=NMP1 +1
I8 = IWK(1)
JADD =0
NTP1=NT+1
D0 12L =1, NTP1
IWK(X+L) =0
ICOMP = 4
NOwW =1
t=M+1
=X

C ESTASLISE TES MATRICES

C

15 DO230L=1,LU

11 = JADD

Jl=L

D02201=1,1V

=]

i2=1

[F(ICOMP .EQ. 0)J2=I*N+1L

IGIRD=1 -

D3 =0.D0

IF (IND(XR) .NE. J .OR. KR .GT. X) GO TO 120
D1 = EC(KR)

IF(IE.NE.J) GO TO 20

DR=XS

IF (NOW .GT. NT .CR IE .NE. IT(NOW)) GO TQ 40
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60

70

IF (DABS(XE - XT(NOW)) .LT. 5.D-¢) GO TC 240
D2 = DMIN1(XE,.XT(NOW))

D3 = DMAX1(XE.XT(NOW))

GO TO 40

IF (NCW .GT. NT.OR IT{NOW) .NE. J) GO TO S0
D2 = XT(NOW)

IF (D1 - D2) 50, 240, 70

Bl = EC(XR)*S

I2=N+XR

2=l¢

Je=J4+2

U(J2,J2) = -1.D0/(B*TEE(XR) *DCMPLX(1.D0,DAM))
U{J2,J2+1) = -U(J2.J2)

U{I2+1,J2) = U(J2.J2+1)

U(Ja+1,J2+1) = U(12,J2)

KR=KR+1

ASSIGN 150 TQ JUMP

ASSIGN 40 TO JCR

IF (KR .LE. J8) GO TC 60

J3=J3+1

J8 = IWX(J3)

ASSIGN 80 TO JCR

GO TO 130

D1 =D1 + EC(XR)

GO TO 130

Bl = (EC(XR) + D2-D1)"3

WK(JET) = EC{KR)

IWK(X+JET) = KR

" BCIXR)=D1-D2

72 = NMP1 + K + K + JET
I2=N+K+JET
JET=JET+ 1
ASSIGN 200 TG JUM®

D4 =D2

IF (D3 .EQ. 0.D0) GO TO 71
ASSIGN 40 TO JCR
D2 = D3
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71

84

90

D3 =0.00
GO TO 72
ASSIGN 80 TO JCR

IF (IT(NCW) .NE. IND(XR) .OR D4 .NE. XT(NOW)) GO TC 73

IWK(XK+NTP1+NOW) = I2
NOW=NOW + 1

GQ TO 130

IT=12

GO TO 130

81 =(D02 -D1)*3
2=N+K+/JET
I2=NMP1 + K+ K+ JET
IET=JET+1

Di1=D2

ASSIGN 2C0 TO JUMP
ASSIGN 110 TOJCR

IF (D3 .EQ. 0.D0) GO TC 84
L2=CL3

D3 =0.00

ASSIGN 80 TO JCR

IF (IT(NOW) .NZ. J .CR. D1 .NZ. XT(NCW)) GO TO 85
IWK(X+NTPL1+NOW) = I2
NOW=NCW + 1

GO TO 130

I7=12

GO TC 130

Bl = EC(KR)"E
R=N+K2

i2=i4

Je=J4+2

Ui2.J2) = -1.00/(B*TEE(XR) *DCMPLX(1.D0.DAM))
U(l2,J2+1) = -U(2,J2)
U@I2+1,J2) = T(I2,i2+1)
U@2+1,J2+1) = U(J2,J2)
K=K +1

ASSIGN 80 TO ICR
ASSIGN 180 TO JUMP
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IF (XR .LE. J8) GO TO 100
J3=J3+1

J8 = TWK({J3)

ASSIGN 110 TOJCR

GC TG 130

100 D1 =D1 + EC(KR)

GO TO 130

110 BI=(1.DC - D1)*B

IGIFD =2

2=]

2=

IF(ICOMP .EQ.0)J2=I*N+L
ASSIGN 210 TO JUMP

GO TO 130

120 D1 =0.00

122

230

F (IE.NE. 1) GO T 121

L2=XE

IF (NCW .GT. NT .CR. IE .NE. IT(NOW)) GO TO £0
IF (DASS(XT - XT(NOW)) .LT. 5.D~¢) GO TO 240
D2 = DMINLOE.XT(NCW))

D2 = DMAXH(XEXT(NCW))

GO TO =0

I¥ (NCW .GT. NT .CR. IT(NOW) .NE. J) GO TO 122
Dz = XT(NCW)

GO TO 20

3i=138

IGRD = 3

ASSIGN 210 TC SU\E

3] = IS(I+:ATC) 8l

CCMFUTE TEE [-CIRCUIT PARAMETERS

EXP1 = COEXP(3])
EXF2 = CCER(-31)

W = (ZXPL - £XP2)/2.00
WP = (ZXP1 + F2)/2.00
EXP1 = CDSIN(BI)
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EXP2 = CDCCS(21)
ALF = WP*EXF2 - 1.D0
P = WP=EXPL

Q = (P - WeEXP2)/ALF
P = (P + W*EXP2)/ALF

" QP = WeEXP1/ALF

170

[y -Te
200

210
_2C

PP = (W + EXP1)/ALY
W = (W - EXP1)/ALF
WP = (WP - EXP2)/ALF

U@2.2) = U(I2.02) + §
IF (11 .EQ. 0).GO TO 160
UI1.J1) =U{JLd 1)+Q
U{J1d2) =W

vz =W

13 = ICCMP + IGIRD

GO TO (150,170,180),13
Z{Ll1) = 2(1L11) + P
Z(11,12) = Z(11.12) - PP
Z(12,11) = Z(1211) - 7P
X(11.31) = X(11,31) - QP
X(11.12) = -WP

X(12,J1) = WP

X(12,J2) = QP

7(12.12) = Z(121) + P
GC TQ 180

X{(11.J1) = X(11.J1) - QP
X(11.J2) = -WP

Z(11,11) = 2111 +?
J1=1l2

n=I12

GO TO JUMP,(80, 110, 180, 200, 210)
Ji=Jl+l

IGIFED = 4

GO TC JCR.(40, 80, 90, 110)
I=l+1

CONTINUE
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120

230 CONTINUE
I¥ (JADD .EQ. N) GO TO 250
JADD =N
ICOMP =0
LU=N
=M
GOTO 15
240 WRITE(6,250)
250 FORMAT(1X,'LCCATIONS SPZCIFIED FOR DIFFERENT TEINGS TCO CLOSE")
RETURN
250 D1 =0.D0
DO2ss5I=1 M
285 D1 =Dl + ES(N=+I)
Bl=EB*D1
pDo2s8I= 1L N
288 Z(LI) = Z(1.I) + =1

c
C MATRICES ESTASLISEZDD
C

DO2701=1,NTPL .
IF (IWK(X<=NTP1+1-1) .EQ. 0) GC TQ 270
EC(IWK(X+NTP1+1-I)) = WK(NTP1+1-1)
270 CONTINUE
Do3W0J =1 IR
DO2s0I=1, TUR
280 XTR(J) = X({.1)
3C0 CONTINUE

c

c ceMpuTE UY

c
IJCB=0
CALL LEQ2C(U, IUR, IUR, XTR, IR, IUR, LIOB, WA, WX. [ER)
IF (IER .NE. 0) RETURN

: :

C COMPUTE Z-XU'X

c

DO38oJ=L KR




Do370I=1,17
Bl=0.D0
DO360I1=1IUR
380 21= 31~ X(LI1)*XTR(I1.J)
370 Z(LJ) = Z2(LI) - Bl
380 CONTINUE
n1=Kr-1
2o030J=1, 1L
Ji=J+ 1
LO30I=J1.XR
350 Z(1.J) = Z(3.01)

4C0 RE(I) =0.2C

[ I L S
C courr Z-XU X RE
» d
-
-
WCB =70
1 =1
CALL 1232C(Z. XA DR RE L IXR L03, WA, WX, [ER)

= (IZR .NZ. Q) RETURN

- e

430 RE(N<K-0) = WATWK(X+NTP1=1))
RECE) = waA(I?)
RETURN
END







